Residential Foundation

Ľ

Recognizing Shifts in the Home Foundation

Recognizing Shifts in the Home Foundation Subtle Clues That Indicate Structural Changes Early Indicators of Potential Foundation Damage Observing Signs of Settlement in Floors Identifying Hairline Cracks and Surface Gaps Evaluating Tilted Door Frames and Window Alignment Understanding Bowed Wall Patterns in Basements Detecting Weak Spots Beneath Interior Flooring Uncovering Gradual Shifts in Support Beams Pinpointing Areas Prone to Moisture Intrusion Checking for Stair-Step Cracks Along Walls Preventing Growth of Small Foundation Cracks

- Exploring Slab on Grade Construction Details
 Exploring Slab on Grade Construction Details Comparing Pier and Beam Home Foundations Recognizing Basement Foundations in Older Houses Understanding the Basics of Piering Strategies Exploring Techniques for Slab Jacking Projects Grasping the Scope of Epoxy Injection Repairs Assessing Helical Piers for Added Support Considering Carbon Fiber Solutions for Wall Reinforcement Discovering Polyurethane Foam Applications Investigating Steel Piers in Home Restoration Reviewing Concrete Piers for Structural Stability Selecting Appropriate Methods for Specific Soil Types
- About Us

Carbon fiber reinforcement adds strength to foundation wall repair service **foundation repair service areas** mortar.

Slab jacking, also known as mud jacking or concrete lifting, is a cost-effective and efficient method for repairing sunken or uneven concrete slabs. This technique involves injecting a grout mixture beneath the slab to raise it back to its original position. As a homeowner or contractor, understanding the various techniques used in slab jacking projects can help you make informed decisions and ensure the best possible results.

One of the primary techniques used in slab jacking is the traditional mud jacking method. This approach involves drilling holes into the sunken concrete slab and injecting a slurry mixture, typically composed of water, soil, and cement, beneath the slab. The slurry fills the voids and lifts the slab back into place. Mud jacking is a well-established technique that has been used for decades, making it a reliable choice for many slab jacking projects.

In recent years, polyurethane foam injection has emerged as a popular alternative to traditional mud jacking. This technique involves injecting a two-part polyurethane foam beneath the slab, which expands and hardens, lifting the concrete back to its original position. Polyurethane foam injection offers several advantages over mud jacking, including faster curing times, lighter weight, and resistance to water and soil erosion. However, it may be more expensive than traditional mud jacking, depending on the specific project requirements.

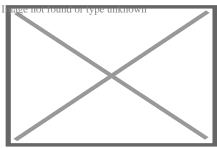
Another technique gaining traction in the slab jacking industry is the use of self-leveling compounds. These compounds, often made from a mixture of cement, sand, and polymers, are poured onto the surface of the sunken slab and allowed to flow into the low spots. As the compound cures, it hardens and creates a level surface. Self-leveling compounds are particularly useful for interior applications, such as leveling uneven floors before installing new flooring materials.

Regardless of the technique chosen, proper preparation is essential for the success of any slab jacking project. This includes conducting a thorough assessment of the slab and the underlying soil conditions, determining the cause of the settlement, and developing a comprehensive plan for the repair. It's crucial to work with experienced professionals who can accurately diagnose the problem and recommend the most appropriate solution.

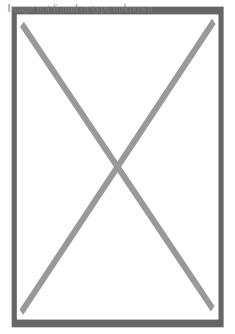
In addition to the technical aspects of slab jacking, it's important to consider the long-term durability and performance of the repaired slab. Factors such as the quality of the grout or

foam used, the skill of the technicians performing the work, and the maintenance of the repaired area all play a role in ensuring the longevity of the slab jacking project.

As you explore the various techniques for slab jacking projects, it's essential to weigh the pros and cons of each approach and consider factors such as cost, time, and the specific requirements of your project. By working with knowledgeable professionals and choosing the right technique for your needs, you can successfully restore your sunken or uneven concrete slabs, enhancing the safety, appearance, and value of your property.


About home repair

For the novel by Liz Rosenberg, see Home Repair (novel).


For other uses of "repair", see Maintenance.

This article **needs additional citations for verification**. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.

Find sources: "Home repair" – news • newspapers • books • scholar • JSTOR *(January 2017) (Learn how and when to remove this message)*

A mobile home being repaired in Oklahoma

A person making these repairs to a house after a flood

Home repair involves the diagnosis and resolution of problems in a home, and is related to home maintenance to avoid such problems. Many types of repairs are "do it yourself" (DIY) projects, while others may be so complicated, time-consuming or risky as to require the assistance of a qualified handyperson, property manager, contractor/builder, or other professionals.

Home repair is not the same as renovation, although many improvements can result from repairs or maintenance. Often the costs of larger repairs will justify the alternative of investment in full-scale improvements. It may make just as much sense to upgrade a home system (with an improved one) as to repair it or incur ever-more-frequent and expensive

maintenance for an inefficient, obsolete or dying system.

Worn, consumed, dull, dirty, clogged

[edit]

Repairs often mean simple replacement of worn or used components intended to be periodically renewed by a home-owner, such as burnt out light bulbs, worn out batteries, or overfilled vacuum cleaner bags. Another class of home repairs relates to restoring something to a useful condition, such as sharpening tools or utensils, replacing leaky faucet washers, cleaning out plumbing traps, rain gutters. Because of the required precision, specialized tools, or hazards, some of these are best left to experts such as a plumber. One emergency repair that may be necessary in this area is overflowing toilets. Most of them have a shut-off valve on a pipe beneath or behind them so that the water supply can be turned off while repairs are made, either by removing a clog or repairing a broken mechanism.

Broken or damaged

[edit]

Perhaps the most perplexing repairs facing a home-owner are broken or damaged things. In today's era of built-in obsolescence for many products, it is often more convenient to replace something rather than attempt to repair it. A repair person is faced with the tasks of accurately identifying the problem, then finding the materials, supplies, tools and skills necessary to sufficiently effect the repair. Some things, such as broken windows, appliances or furniture can be carried to a repair shop, but there are many repairs that can be performed easily enough, such as patching holes in plaster and drywall, cleaning stains, repairing cracked windows and their screens, or replacing a broken electrical switch or outlet. Other repairs may have some urgency, such as broken water pipes, broken doors, latches or windows, or a leaky roof or water tank, and this factor can certainly justify calling for professional help. A home handyperson may become adept at dealing with such immediate repairs, to avoid further damage or loss, until a professional can be summoned.

Emergency repairs

[edit]

Emergencies can happen at any time, so it is important to know how to quickly and efficiently fix the problem. From natural disasters, power loss, appliance failure and no water, emergency repairs tend to be one of the most important repairs to be comfortable and confident with. In most cases, the repairs are DIY or fixable with whatever is around the house. Common repairs would be fixing a leak, broken window, flooding, frozen pipes or clogged toilet. Each problem can have a relatively simple fix, a leaky roof and broken window

can be patched, a flood can be pumped out, pipes can be thawed and repaired and toilets can be unclogged with a chemical. For the most part, emergency repairs are not permanent. They are what you can do fast to stop the problem then have a professional come in to permanently fix it.¹ Flooding as a result of frozen pipes, clogged toilets or a leaky roof can result in very costly water damage repairs and even potential health issues resulting from mold growth if not addressed in a timely manner.

Maintenance

[edit]

Periodic maintenance also falls under the general class of home repairs. These are inspections, adjustments, cleaning, or replacements that should be done regularly to ensure proper functioning of all the systems in a house, and to avoid costly emergencies. Examples include annual testing and adjustment of alarm systems, central heating or cooling systems (electrodes, thermocouples, and fuel filters), replacement of water treatment components or air-handling filters, purging of heating radiators and water tanks, defrosting a freezer, vacuum refrigerator coils, refilling dry floor-drain traps with water, cleaning out rain gutters, down spouts and drains, touching up worn house paint and weather seals, and cleaning accumulated creosote out of chimney flues, which may be best left to a chimney sweep.

Examples of less frequent home maintenance that should be regularly forecast and budgeted include repainting or staining outdoor wood or metal, repainting masonry, waterproofing masonry, cleaning out septic systems, replacing sacrificial electrodes in water heaters, replacing old washing machine hoses (preferably with stainless steel hoses less likely to burst and cause a flood), and other home improvements such as replacement of obsolete or ageing systems with limited useful lifetimes (water heaters, wood stoves, pumps, and asphaltic or wooden roof shingles and siding.

Often on the bottom of people's to-do list is home maintenance chores, such as landscaping, window and gutter cleaning, power washing the siding and hard-scape, etc. However, these maintenance chores pay for themselves over time. Often, injury could occur when operating heavy machinery or when climbing on ladders or roofs around your home, so if an individual is not in the proper physical condition to accomplish these chores, then they should consult a professional. Lack of maintenance will cost more due to higher costs associated with repairs or replacements to be made later. It requires discipline and learning aptitude to repair and maintain the home in good condition, but it is a satisfying experience to perform even seemingly minor repairs.

Good operations

[edit]

Another related issue for avoiding costly repairs (or disasters) is the proper operation of a home, including systems and appliances, in a way that prevents damage or prolongs their usefulness. For example, at higher latitudes, even a clean rain gutter can suddenly build up an ice dam in winter, forcing melt water into unprotected roofing, resulting in leaks or even flooding inside walls or rooms. This can be prevented by installing moisture barrier beneath the roofing tiles. A wary home-owner should be alert to the conditions that can result in larger problems and take remedial action before damage or injury occurs. It may be easier to tack down a bit of worn carpet than repair a large patch damaged by prolonged misuse. Another example is to seek out the source of unusual noises or smells when mechanical, electrical or plumbing systems are operating—sometimes they indicate incipient problems. One should avoid overloading or otherwise misusing systems, and a recurring overload may indicate time for an upgrade.

Water infiltration is one of the most insidious sources of home damage. Small leaks can lead to water stains, and rotting wood. Soft, rotten wood is an inviting target for termites and other wood-damaging insects. Left unattended, a small leak can lead to significant structural damage, necessitating the replacement of beams and framing.

With a useful selection of tools, typical materials and supplies on hand, and some home repair information or experience, a home-owner or handyperson should be able to carry out a large number of DIY home repairs and identify those that will need the specialized attention of others.

Remediation of environmental problems

[edit]

When a home is sold, inspections are performed that may reveal environmental hazards such as radon gas in the basement or water supply or friable asbestos materials (both of which can cause lung cancer), peeling or disturbed lead paint (a risk to children and pregnant women), in-ground heating oil tanks that may contaminate ground water, or mold that can cause problems for those with asthma or allergies. Typically the buyer or mortgage lender will require these conditions to be repaired before allowing the purchase to close. An entire industry of environmental remediation contractors has developed to help home owners resolve these types of problems.

See also

[edit]

- Housing portal
- Electrical wiring

- Handyperson
- Housekeeping
- Home improvement
- $\circ~$ Home wiring
- \circ HVAC
- Maintenance, repair, and operations
- \circ Plumbing
- Right to repair
- Smoke alarm
- \circ Winterization

References

[edit]

1. A Reader's Digest New Complete Do-it-yourself Manual. Montreal, Canada: Reader's Digest Association. 1991. pp. 9–13. ISBN 9780888501783. OCLC 1008853527.

οV

o t

• **e**

Rooms and spaces of a house

- Bonus room
- Common room
- Den
- Dining room
- Family room
- Garret
- Great room
- Home cinema
- Kitchen
 - dirty kitchen

Shared rooms

- kitchenette
- Living room
- Gynaeceum
 - harem
- Andron
 - man cave
- Recreation room
 billiard room
- Shrine
- Study
- Sunroom
- Bathroom
 - \circ toilet

• closet

- Bedroom / Guest room
- Private rooms
 - Bedsit / Miniflat
 - Boudoir
 - Cabinet
 - Nursery

- Atrium
- Balcony
- Breezeway
- Conversation pit
- Cubby-hole
- Deck
- Elevator
 - dumbwaiter
- Entryway/Genkan
- Fireplace
 - hearth
- Foyer
- Hall
- Hallway

Spaces

- InglenookLanai
- ∘ Loft
- Loggia
- Overhang
- Patio
- Porch
 - screened
 - sleeping
- Ramp
- Secret passage
- Stairs/Staircase
- Terrace
- Veranda
- Vestibule

- Attic
- Basement
- Carport
- Cloakroom
- Closet
- Crawl space
- Electrical room
- Equipment room
- Furnace room / Boiler room
- Garage
- Janitorial closet

Technical, utility and storage

- Larder
- Laundry room / Utility room / Storage room
- $\circ\,$ Mechanical room / floor
- Pantry
- Root cellar
- Semi-basement
- Storm cellar / Safe room
- Studio
- Wardrobe
- Wine cellar
- Wiring closet
- Workshop

- Antechamber
- Ballroom
- Kitchen-related
 - ∘ butler's pantry
 - buttery
 - saucery
 - \circ scullery
 - \circ spicery
 - still room
- Conservatory / Orangery
- Courtyard
- Drawing room
- Great chamber

Great house areas

- Great hall Library
- Long gallery
- Lumber room
- Parlour
- Sauna
- Servants' hall
- Servants' quarters
- Smoking room
- Solar
- State room
- Swimming pool
- Turret
- Undercroft

- Furniture
- Hidden room
- House
 - \circ house plan
 - styles
 - \circ types

Other

- Multi-family residentialSecondary suite
- Duplex
- Terraced
- Detached
- Semi-detached
- \circ Townhouse
- Studio apartment

- \circ Arch
- Balconet
- Baluster
- Belt course
- Bressummer
- Ceiling
- Chimney
- Colonnade / Portico
- Column
- Cornice / Eaves
- Dome
- Door
- ∘ Ell
- Floor
- Foundation
- Gable

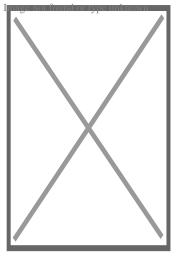
• Gate

Architectural elements

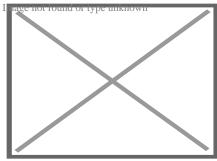
- Portal
- Lighting
- Ornament
- Plumbing
- Quoins
- Roof
 - shingles
- Roof lantern
- Sill plate
- Style
 - ∘ list
- Skylight
- Threshold
- Transom
- Vault
- Wall
- Window

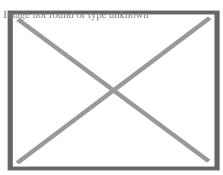
- Backyard
- Driveway
- Front yard
- Garden

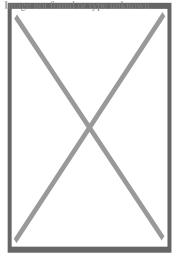
Related


- roof garden • Home
- Home improvement
- Home repair
- Shed
- Tree house

• Category: Rooms


About soil mechanics


This article may be too long to read and navigate comfortably. Consider splitting content into sub-articles, condensing it, or adding subheadings. Please discuss this issue on the article's talk page. (February 2025)


The Leaning Tower of Pisa – an example of a problem due to deformation of soil

Slope instability issues for a temporary flood control levee in North Dakota, 2009

Earthwork in Germany

Fox Glacier, New Zealand: Soil produced and transported by intense weathering and erosion

Soil mechanics is a branch of soil physics and applied mechanics that describes the behavior of soils. It differs from fluid mechanics and solid mechanics in the sense that soils consist of a heterogeneous mixture of fluids (usually air and water) and particles (usually clay, silt, sand, and gravel) but soil may also contain organic solids and other matter. $[^1][^2][^3][^4]$ Along with rock mechanics, soil mechanics provides the theoretical basis for analysis in geotechnical engineering, $[^5]$ a subdiscipline of civil engineering, and engineering geology, a subdiscipline of geology. Soil mechanics is used to analyze the deformations of and flow of fluids within natural and man-made structures that are supported on or made of soil, or structures that are buried in soils. $[^6]$ Example applications are building and bridge foundations, retaining walls, dams, and buried pipeline systems. Principles of soil mechanics are also used in related disciplines such as geophysical engineering, coastal engineering, agricultural engineering, and hydrology.

This article describes the genesis and composition of soil, the distinction between *pore water pressure* and inter-granular *effective stress*, capillary action of fluids in the soil pore spaces, *soil classification*, *seepage* and *permeability*, time dependent change of volume due to squeezing water out of tiny pore spaces, also known as *consolidation*, *shear strength* and stiffness of soils. The shear strength of soils is primarily derived from friction between the particles and interlocking, which are very sensitive to the effective stress.^[7][⁶] The article concludes with some examples of applications of the principles of soil mechanics such as slope stability, lateral earth pressure on retaining walls, and bearing capacity of foundations.

Genesis and composition of soils

[edit]

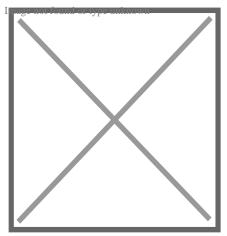
Genesis

[edit]

The primary mechanism of soil creation is the weathering of rock. All rock types (igneous rock, metamorphic rock and sedimentary rock) may be broken down into small particles to create soil. Weathering mechanisms are physical weathering, chemical weathering, and biological weathering $[^1][^2][^3]$ Human activities such as excavation, blasting, and waste disposal, may also create soil. Over geologic time, deeply buried soils may be altered by pressure and temperature to become metamorphic or sedimentary rock, and if melted and solidified again, they would complete the geologic cycle by becoming igneous rock. $[^3]$

Physical weathering includes temperature effects, freeze and thaw of water in cracks, rain, wind, impact and other mechanisms. Chemical weathering includes dissolution of matter composing a rock and precipitation in the form of another mineral. Clay minerals, for example can be formed by weathering of feldspar, which is the most common mineral present in igneous rock.

The most common mineral constituent of silt and sand is quartz, also called silica, which has the chemical name silicon dioxide. The reason that feldspar is most common in rocks but silica is more prevalent in soils is that feldspar is much more soluble than silica.


Silt, Sand, and Gravel are basically little pieces of broken rocks.

According to the Unified Soil Classification System, silt particle sizes are in the range of 0.002 mm to 0.075 mm and sand particles have sizes in the range of 0.075 mm to 4.75 mm.

Gravel particles are broken pieces of rock in the size range 4.75 mm to 100 mm. Particles larger than gravel are called cobbles and boulders.[1][2]

Transport

[edit]

Example soil horizons. a) top soil and colluvium b) mature residual soil c) young residual soil d) weathered rock

Soil deposits are affected by the mechanism of transport and deposition to their location. Soils that are not transported are called residual soils—they exist at the same location as the rock from which they were generated. Decomposed granite is a common example of a residual soil. The common mechanisms of transport are the actions of gravity, ice, water, and wind. Wind blown soils include dune sands and loess. Water carries particles of different size depending on the speed of the water, thus soils transported by water are graded according to their size. Silt and clay may settle out in a lake, and gravel and sand collect at the bottom of a river bed. Wind blown soil deposits (aeolian soils) also tend to be sorted according to their grain size. Erosion at the base of glaciers is powerful enough to pick up large rocks and boulders as well as soil; soils dropped by melting ice can be a well graded mixture of widely varying particle sizes. Gravity on its own may also carry particles down from the top of a mountain to make a pile of soil and boulders at the base; soil deposits transported by gravity are called colluvium.[¹][²]

The mechanism of transport also has a major effect on the particle shape. For example, low velocity grinding in a river bed will produce rounded particles. Freshly fractured colluvium particles often have a very angular shape.

Soil composition

[edit]

Soil mineralogy

[edit]

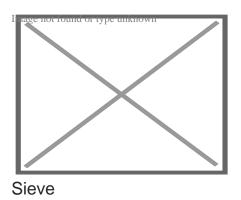
Silts, sands and gravels are classified by their size, and hence they may consist of a variety of minerals. Owing to the stability of quartz compared to other rock minerals, quartz is the most common constituent of sand and silt. Mica, and feldspar are other common minerals present in sands and silts.^[1] The mineral constituents of gravel may be more similar to that of the parent rock.

The common clay minerals are montmorillonite or smectite, illite, and kaolinite or kaolin. These minerals tend to form in sheet or plate like structures, with length typically ranging between 10^{?7} m and 4x10^{?6} m and thickness typically ranging between 10^{?9} m and 2x10^{?6} m, and they have a relatively large specific surface area. The specific surface area (SSA) is defined as the ratio of the surface area of particles to the mass of the particles. Clay minerals typically have specific surface areas in the range of 10 to 1,000 square meters per gram of solid.^[3] Due to the large surface area available for chemical, electrostatic, and van der Waals interaction, the mechanical behavior of clay minerals is very sensitive to the amount of pore fluid available and the type and amount of dissolved ions in the pore fluid.^[1]

The minerals of soils are predominantly formed by atoms of oxygen, silicon, hydrogen, and aluminum, organized in various crystalline forms. These elements along with calcium, sodium, potassium, magnesium, and carbon constitute over 99 per cent of the solid mass of soils.^[1]

Grain size distribution

[edit] Main article: Soil gradation


Soils consist of a mixture of particles of different size, shape and mineralogy. Because the size of the particles obviously has a significant effect on the soil behavior, the grain size and grain size distribution are used to classify soils. The grain size distribution describes the relative proportions of particles of various sizes. The grain size is often visualized in a cumulative distribution graph which, for example, plots the percentage of particles finer than a given size as a function of size. The median grain size, display and size for which 50% of the

particle mass consists of finer particles. Soil behavior, especially the hydraulic conductivity, tends to be dominated by the smaller particles, hence, the term "effective size", denoted by displayed as the size for which 10% of the particle mass consists of finer particles.

Sands and gravels that possess a wide range of particle sizes with a smooth distribution of particle sizes are called *well graded* soils. If the soil particles in a sample are predominantly in a relatively narrow range of sizes, the sample is *uniformly graded*. If a soil sample has distinct gaps in the gradation curve, e.g., a mixture of gravel and fine sand, with no coarse sand, the sample may be *gap graded*. *Uniformly graded* and *gap graded* soils are both considered to be *poorly graded*. There are many methods for measuring particle-size distribution. The two traditional methods are sieve analysis and hydrometer analysis.

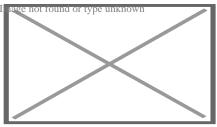
Sieve analysis

[edit]

The size distribution of gravel and sand particles are typically measured using sieve analysis. The formal procedure is described in ASTM D6913-04(2009).^[8] A stack of sieves with accurately dimensioned holes between a mesh of wires is used to separate the particles into size bins. A known volume of dried soil, with clods broken down to individual particles, is put into the top of a stack of sieves arranged from coarse to fine. The stack of sieves is shaken for a standard period of time so that the particles are sorted into size bins. This method works reasonably well for particles in the sand and gravel size range. Fine particles tend to stick to each other, and hence the sieving process is not an effective method. If there are a lot of fines (silt and clay) present in the soil it may be necessary to run water through the sieves to wash the coarse particles and clods through.

A variety of sieve sizes are available. The boundary between sand and silt is arbitrary. According to the Unified Soil Classification System, a #4 sieve (4 openings per inch) having 4.75 mm opening size separates sand from gravel and a #200 sieve with an 0.075 mm opening separates sand from silt and clay. According to the British standard, 0.063 mm is the boundary between sand and silt, and 2 mm is the boundary between sand and gravel.³]

Hydrometer analysis


[edit]

The classification of fine-grained soils, i.e., soils that are finer than sand, is determined primarily by their Atterberg limits, not by their grain size. If it is important to determine the grain size distribution of fine-grained soils, the hydrometer test may be performed. In the hydrometer tests, the soil particles are mixed with water and shaken to produce a dilute suspension in a glass cylinder, and then the cylinder is left to sit. A hydrometer is used to measure the density of the suspension as a function of time. Clay particles may take several hours to settle past the depth of measurement of the hydrometer. Sand particles may take less than a second. Stokes' law provides the theoretical basis to calculate the relationship between sedimentation velocity and particle size. ASTM provides the detailed procedures for performing the Hydrometer test.

Clay particles can be sufficiently small that they never settle because they are kept in suspension by Brownian motion, in which case they may be classified as colloids.

Mass-volume relations

[edit]

A phase diagram of soil indicating the masses and volumes of air, solid, water, and voids

There are a variety of parameters used to describe the relative proportions of air, water and solid in a soil. This section defines these parameters and some of their interrelationships.^[2]⁶] The basic notation is as follows:

displained with the volumes of air, water and solids in a soil mixture;

displaist and solids in a soil mixture;

displatist and solids in a soil mixture;

Misplayer, water and solids) in a soil mixture;

Note that the weights, W, can be obtained by multiplying the mass, M, by the acceleration due to gravity, g; e.g., $Misplaystyle_W ms = M_sg$

Specific Gravity is the ratio of the density of one material compared to the density of pure \displaystyle \rho_w=1g/cm^3 water (Image not found or type) pknown

\displaystyle G_s=\frac \rho _s\rho _w

Specific gravity of solids, Image not found or type unknown

Note that specific weight, conventionally denoted by the symbol to gravity, the specific weight weig

Density, bulk density, or wet density, distributed by the total water and solids (the mass of air, water, solids divided by the total volume of air water and solids (the mass of air is assumed to be zero for practical purposes):

\displaystyle \rho =\frac M_s+M_wV_s+V_w+V_a=\frac M_tV_t

Image not found or type unknown

Dry density, disisthe mass of splids divided by the total volume of air water and solids:

\displaystyle \rho _d=\frac M_sV_s+V_w+V_a=\frac M_sV_t

Image not found or type unknown

Buoyant density, he density of the mixture minus the density of water is useful if the soil is submerged under water:

\displaystyle \rho '=\rho \ -\rho _w

where disist the density of water

Water content, *Chisplace of the sole of*

```
\displaystyle w=\frac M_wM_s=\frac W_wW_s
```

Image not found or type unknown

Void ratio, Valish the volume of voids to the volume of solids:

\displaystyle e=\frac V_vV_s=\frac V_vV_t-V_v=\frac n1-n

Image not found or type unknown

Porosity, this the void of voids to the total volume, and is related to the void ratio:

\displaystyle n=\frac V_vV_t=\frac V_vV_s+V_v=\frac e1+e

Image not found or type unknown

Degree of saturation, displayes trate Sofether volume of water to the volume of voids:

\displaystyle S=\frac V_wV_v

Image not found or type unknown

From the above definitions, some useful relationships can be derived by use of basic algebra.

\displaystyle \rho =\frac (G_s+Se)\rho _w1+e

Image not found or type unknown

\displaystyle \rho =\frac (1+w)G_s\rho _w1+e

Image not found or type unknown

\displaystyle w=\frac SeG_s

Image not found or type unknown

Soil classification

[edit]

Geotechnical engineers classify the soil particle types by performing tests on disturbed (dried, passed through sieves, and remolded) samples of the soil. This provides information about the characteristics of the soil grains themselves. Classification of the types of grains present in a soil does not [[]*clarification needed*[]] account for important effects of the *structure* or *fabric* of the soil, terms that describe compactness of the particles and patterns in the arrangement of particles in a load carrying framework as well as the pore size and pore fluid distributions. Engineering geologists also classify soils based on their genesis and depositional history.

Classification of soil grains

[edit]

In the US and other countries, the Unified Soil Classification System (USCS) is often used for soil classification. Other classification systems include the British Standard BS 5930 and the AASHTO soil classification system.^[3]

Classification of sands and gravels

[edit]

In the USCS, gravels (given the symbol *G*) and sands (given the symbol *S*) are classified according to their grain size distribution. For the USCS, gravels may be given the classification symbol *GW* (well-graded gravel), *GP* (poorly graded gravel), *GM* (gravel with a large amount of silt), or *GC* (gravel with a large amount of clay). Likewise sands may be classified as being *SW*, *SP*, *SM* or *SC*. Sands and gravels with a small but non-negligible amount of fines (5–12%) may be given a dual classification such as *SW-SC*.

Atterberg limits

[edit]

Clays and Silts, often called 'fine-grained soils', are classified according to their Atterberg limits; the most commonly used Atterberg limits are the *liquid limit* (denoted by *LL* or *lighterstyle*) and strinkage, *limit* (denoted by *SL*).

The liquid limit is the water content at which the soil behavior transitions from a plastic solid to a liquid. The plastic limit is the water content at which the soil behavior transitions from that of a plastic solid to a brittle solid. The Shrinkage Limit corresponds to a water content below which the soil will not shrink as it dries. The consistency of fine grained soil varies in proportional to the water content in a soil.

As the transitions from one state to another are gradual, the tests have adopted arbitrary definitions to determine the boundaries of the states. The liquid limit is determined by measuring the water content for which a groove closes after 25 blows in a standard test. $[^9]^[clarificate Alternatively, a fall cone test apparatus may be used to measure the liquid limit. The undrained shear strength of remolded soil at the liquid limit is approximately 2 kPa. <math>[^4]^{[10]}$ The plastic limit is the water content below which it is not possible to roll by hand the soil into 3 mm diameter cylinders. The soil cracks or breaks up as it is rolled down to this diameter. Remolded soil at the plastic limit is quite stiff, having an undrained shear strength of the order of about 200 kPa. $[^4]^{[10]}$

The *plasticity index* of a particular soil specimen is defined as the difference between the liquid limit and the plastic limit of the specimen; it is an indicator of how much water the soil particles in the specimen can absorb, and correlates with many engineering properties like

permeability, compressibility, shear strength and others. Generally, the clay having high plasticity have lower permeability and also they are also difficult to be compacted.

Classification of silts and clays

[edit]

According to the Unified Soil Classification System (USCS), silts and clays are classified by plotting the values of their plasticity index and liquid limit on a plasticity chart. The A-Line on the chart separates clays (given the USCS symbol *C*) from silts (given the symbol *M*). LL=50% separates high plasticity soils (given the modifier symbol *H*) from low plasticity soils (given the modifier symbol *L*). A soil that plots above the A-line and has LL>50% would, for example, be classified as *CH*. Other possible classifications of silts and clays are *ML*, *CL* and *MH*. If the Atterberg limits plot in the"hatched" region on the graph near the origin, the soils are given the dual classification 'CL-ML'.

Indices related to soil strength

[edit]

Liquidity index

[edit]

The effects of the water content on the strength of saturated remolded soils can be quantified by the use of the *liquidity index*, *LI*:

```
\displaystyle LI=\frac w-PLLL-PL
```

Image not found or type unknown

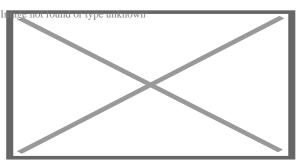
When the LI is 1, remolded soil is at the liquid limit and it has an undrained shear strength of about 2 kPa. When the soil is at the plastic limit, the LI is 0 and the undrained shear strength is about 200 kPa.[⁴][¹¹]

Relative density

[edit]

The density of sands (cohesionless soils) is often characterized by the relative density, displaystyle

Image not found or type unknown

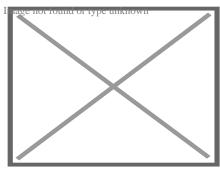

where: \displaystyle="maximum void ratio" corresponding to a very loose state, \displaystyle="minum" minimum void ratio" corresponding to a very dense state and \displaystyle="minum" displaystyle" void ratio. Methods used to calculate relative density are defined in ASTM D4254-00(2006).[12]

Thus if \displaystyle, the stand or gravel is very dense, and if \displaystyle, bigs extremely loose and unstable.

Seepage: steady state flow of water

[edit]

This section is an excerpt from Seepage.[edit]



A cross section showing the water table varying with surface topography as well as a perched water table

In soil mechanics, seepage is the movement of water through soil. If fluid pressures in a soil deposit are uniformly increasing with depth according to <u>displaystyle</u>, <u>where</u> <u>displaystyle</u>, <u>displ</u>

Effective stress and capillarity: hydrostatic conditions

[edit]

Spheres immersed in water, reducing effective stress

Main article: Effective stress

To understand the mechanics of soils it is necessary to understand how normal stresses and shear stresses are shared by the different phases. Neither gas nor liquid provide significant resistance to shear stress. The shear resistance of soil is provided by friction and interlocking of the particles. The friction depends on the intergranular contact stresses between solid particles. The normal stresses, on the other hand, are shared by the fluid and the particles.[⁷] Although the pore air is relatively compressible, and hence takes little normal stress in most geotechnical problems, liquid water is relatively incompressible and if the voids are saturated with water, the pore water must be squeezed out in order to pack the particles closer together.

The principle of effective stress, introduced by Karl Terzaghi, states that the effective stress ?' (i.e., the average intergranular stress between solid particles) may be calculated by a simple subtraction of the pore pressure from the total stress:

\displaystyleysigma,'=\sigma -u\,

where ? is the total stress and *u* is the pore pressure. It is not practical to measure ?' directly, so in practice the vertical effective stress is calculated from the pore pressure and vertical total stress. The distinction between the terms pressure and stress is also important. By definition, pressure at a point is equal in all directions but stresses at a point can be different in different directions. In soil mechanics, compressive stresses and pressures are considered to be positive and tensile stresses are considered to be negative, which is different from the solid mechanics sign convention for stress.

Total stress

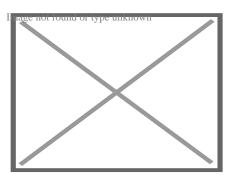
[edit]

For level ground conditions, the total vertical stress at a point, displayere registree weight of everything above that point per unit area. The vertical stress beneath a uniform surface layer

with density to and thick and the norm

```
\displaystylevsigma_v=\rho gH=\gamma H
```

where *consideration* due to gravity, and *consideration* due to gravity due to gravity


It is not possible to calculate the horizontal total stress in this way. Lateral earth pressures are addressed elsewhere.

Pore water pressure

[edit] Main article: Pore water pressure

Hydrostatic conditions

[edit]

Water is drawn into a small tube by surface tension. Water pressure, u, is negative above and positive below the free water surface.

If the soil pores are filled with water that is not flowing but is static, the pore water pressures will be hydrostatic. The water table is located at the depth where the water pressure is equal to the atmospheric pressure. For hydrostatic conditions, the water pressure increases linearly with depth below the water table:

\displaystyleyb=\rhom_wgz_w

where holisist density of water, and holisist here here here water table.

Capillary action

[edit]

Due to surface tension, water will rise up in a small capillary tube above a free surface of water. Likewise, water will rise up above the water table into the small pore spaces around the soil particles. In fact the soil may be completely saturated for some distance above the water table. Above the height of capillary saturation, the soil may be wet but the water content will decrease with elevation. If the water in the capillary zone is not moving, the water pressure obeys the equation of hydrostatic equilibrium, <code>\displaystyle,butnete,thgt_wisptaystyle,ge_water table</code>. The thickness of the zone of capillary saturation depends on the pore size, but typically, the heights vary between a centimeter or so for coarse sand to tens of meters for a silt or clay.[³] In fact the pore space of soil is a uniform fractal e.g. a set of uniformly distributed D-dimensional fractals of average linear size L. For the clay soil it has been found that L=0.15 mm and D=2.7.[¹³]

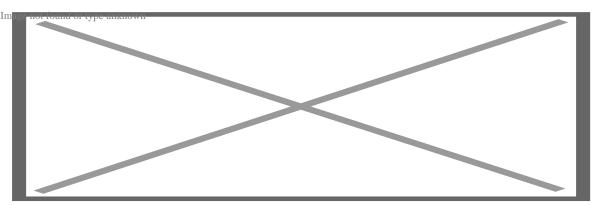
The surface tension of water explains why the water does not drain out of a wet sand castle or a moist ball of clay. Negative water pressures make the water stick to the particles and pull the particles to each other, friction at the particle contacts make a sand castle stable. But as soon as a wet sand castle is submerged below a free water surface, the negative pressures are lost and the castle collapses. Considering the effective stress equation, <u>displaystyle sigma</u>'=\si the water pressure is negative, the effective stress may be positive, even on a free surface (a surface where the total normal stress is zero). The negative pore pressure pulls the particles together and causes compressive particle to particle contact forces. Negative pore pressures in clayey soil can be much more powerful than those in sand. Negative pore pressures explain why clay soils shrink when they dry and swell as they are wetted. The swelling and shrinkage can cause major distress, especially to light structures and roads.[¹⁴]

Later sections of this article address the pore water pressures for seepage and consolidation problems.

Water at particle contacts

0

Image not found or type unknown Water at particle contacts • Intergranular contact force due to surface tension


Image not found or type unknown Intergranular contact force due to surface tension Shrinkage caused by drying

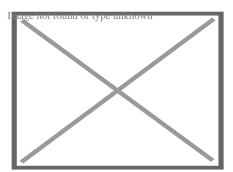
0

Image not found or type unknown Shrinkage caused by drying

Consolidation: transient flow of water

[edit] Main article: Consolidation (soil)

Consolidation analogy. The piston is supported by water underneath and a spring. When a load is applied to the piston, water pressure increases to support the load. As the water slowly leaks through the small hole, the load is transferred from the water pressure to the spring force.


Consolidation is a process by which soils decrease in volume. It occurs when stress is applied to a soil that causes the soil particles to pack together more tightly, therefore reducing volume. When this occurs in a soil that is saturated with water, water will be squeezed out of the soil. The time required to squeeze the water out of a thick deposit of clayey soil layer might be years. For a layer of sand, the water may be squeezed out in a matter of seconds. A building foundation or construction of a new embankment will cause the soil below to consolidate and this will cause settlement which in turn may cause distress to the building or embankment. Karl Terzaghi developed the theory of one-dimensional consolidation which enables prediction of the amount of settlement and the time required for the settlement to occur.^[15] Afterwards, Maurice Biot fully developed the three-dimensional soil consolidation theory, extending the one-dimensional model previously developed by Terzaghi to more general hypotheses and introducing the set of basic equations of Poroelasticity.^[7] Soils are tested with an oedometer test to determine their compression index and coefficient of consolidation.

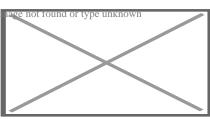
When stress is removed from a consolidated soil, the soil will rebound, drawing water back into the pores and regaining some of the volume it had lost in the consolidation process. If the stress is reapplied, the soil will re-consolidate again along a recompression curve, defined by the recompression index. Soil that has been consolidated to a large pressure and has been subsequently unloaded is considered to be *overconsolidated*. The maximum past vertical effective stress is termed the *preconsolidation stress*. A soil which is currently experiencing the maximum past vertical effective stress is said to be *normally consolidated*. The *overconsolidation ratio*, (OCR) is the ratio of the maximum past vertical effective stress to the current vertical effective stress. The OCR is significantly larger than that for overconsolidated soil, and secondly, the shear behavior and dilatancy of clayey soil are related to the OCR through critical state soil mechanics; highly overconsolidated clayey soils are dilatant, while normally consolidated soils tend to be contractive.[²][³][⁴]

Shear behavior: stiffness and strength

[edit]

Main article: shear strength (soil)

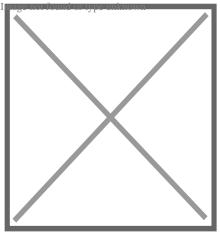
Typical stress strain curve for a drained dilatant soil


The shear strength and stiffness of soil determines whether or not soil will be stable or how much it will deform. Knowledge of the strength is necessary to determine if a slope will be stable, if a building or bridge might settle too far into the ground, and the limiting pressures on a retaining wall. It is important to distinguish between failure of a soil element and the failure of a geotechnical structure (e.g., a building foundation, slope or retaining wall); some soil elements may reach their peak strength prior to failure of the structure. Different criteria can be used to define the "shear strength" and the "yield point" for a soil element from a

stress–strain curve. One may define the peak shear strength as the peak of a stress–strain curve, or the shear strength at critical state as the value after large strains when the shear resistance levels off. If the stress–strain curve does not stabilize before the end of shear strength test, the "strength" is sometimes considered to be the shear resistance at 15–20% strain.[¹⁴] The shear strength of soil depends on many factors including the effective stress and the void ratio.

The shear stiffness is important, for example, for evaluation of the magnitude of deformations of foundations and slopes prior to failure and because it is related to the shear wave velocity. The slope of the initial, nearly linear, portion of a plot of shear stress as a function of shear strain is called the shear modulus

Friction, interlocking and dilation


[edit]

Angle of repose

Soil is an assemblage of particles that have little to no cementation while rock (such as sandstone) may consist of an assembly of particles that are strongly cemented together by chemical bonds. The shear strength of soil is primarily due to interparticle friction and therefore, the shear resistance on a plane is approximately proportional to the effective normal stress on that plane.^[3] The angle of internal friction is thus closely related to the maximum stable slope angle, often called the angle of repose.

But in addition to friction, soil derives significant shear resistance from interlocking of grains. If the grains are densely packed, the grains tend to spread apart from each other as they are subject to shear strain. The expansion of the particle matrix due to shearing was called dilatancy by Osborne Reynolds.^[11] If one considers the energy required to shear an assembly of particles there is energy input by the shear force, T, moving a distance, x and there is also energy input by the normal force, N, as the sample expands a distance, y.^[11] Due to the extra energy required for the particles to dilate against the confining pressures, dilatant soils have a greater peak strength than contractive soils. Furthermore, as dilative soil grains dilate, they become looser (their void ratio increases), and their rate of dilation decreases until they reach a critical void ratio. Contractive soils become denser as they shear, and their rate of contraction decreases until they reach a critical void ratio.

A critical state line separates the dilatant and contractive states for soil.

The tendency for a soil to dilate or contract depends primarily on the confining pressure and the void ratio of the soil. The rate of dilation is high if the confining pressure is small and the void ratio is small. The rate of contraction is high if the confining pressure is large and the void ratio is large. As a first approximation, the regions of contraction and dilation are separated by the critical state line.

Failure criteria

[edit]

After a soil reaches the critical state, it is no longer contracting or dilating and the shear stress on the failure plane displayed and the effective normal stress on the failure plane displayed and critical state friction angle displayed by the critical state frictical state friction angle displayed by the critical state friction angle displayed by t

```
\displaystyle \tau crit=\sigma _n'\tan \phi _crit'\
```

The peak strength of the soil may be greater, however, due to the interlocking (dilatancy) contribution. This may be stated:

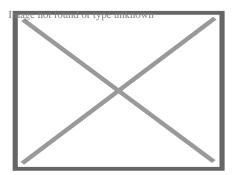
```
\displaystyle \tau peak=\sigma _n'\tan \phi _peak'\
```

where $\frac{displaystyle phi}{mage not found or type the week's the off a friction angle greater than the critical state value for design requires care. The peak strength will not be mobilized everywhere at the same time in a practical problem such as a foundation, slope or retaining wall. The critical state friction angle is not nearly as variable as the peak friction angle and hence it can be relied upon with confidence.[³][⁴][¹¹]$

Not recognizing the significance of dilatancy, Coulomb proposed that the shear strength of soil may be expressed as a combination of adhesion and friction components:[¹¹]

```
\displaystyle \tau _f=c'+\sigma _f'\tan \phi '\,
Image not found or type unknown
```

It is now known that the ^{\displaydighterinterent higher the last equation are not fundamental soil properties.[³][⁶][¹¹][¹⁶] In particular, ^{\displaydighterinterent higher the last equation are not fundamental soil effective stress.[⁶][¹⁶] According to Schofield (2006),[¹¹] the longstanding use of \displaystyleyce unknown practice has led many engineers to wrongly believe that \displaystyleyfertal parameter. This assumption that \displaydighterinterent higher the overestimation of peak strengths.[³][¹⁶]}}


Structure, fabric, and chemistry

[edit]

In addition to the friction and interlocking (dilatancy) components of strength, the structure and fabric also play a significant role in the soil behavior. The structure and fabric include factors such as the spacing and arrangement of the solid particles or the amount and spatial distribution of pore water; in some cases cementitious material accumulates at particle-particle contacts. Mechanical behavior of soil is affected by the density of the particles and their structure or arrangement of the particles as well as the amount and spatial distribution of fluids present (e.g., water and air voids). Other factors include the electrical charge of the particles, chemistry of pore water, chemical bonds (i.e. cementation -particles connected through a solid substance such as recrystallized calcium carbonate) [¹][¹⁶]

Drained and undrained shear

[edit]

Moist sand along the shoreline is originally densely packed by the draining water. Foot pressure on the sand causes it to dilate *(see: Reynolds dilatancy)*, drawing water from the surface into the pores.

The presence of nearly incompressible fluids such as water in the pore spaces affects the ability for the pores to dilate or contract.

If the pores are saturated with water, water must be sucked into the dilating pore spaces to fill the expanding pores (this phenomenon is visible at the beach when apparently dry spots form around feet that press into the wet sand). [clarification needed]

Similarly, for contractive soil, water must be squeezed out of the pore spaces to allow contraction to take place.

Dilation of the voids causes negative water pressures that draw fluid into the pores, and contraction of the voids causes positive pore pressures to push the water out of the pores. If the rate of shearing is very large compared to the rate that water can be sucked into or squeezed out of the dilating or contracting pore spaces, then the shearing is called *undrained shear*, if the shearing is slow enough that the water pressures are negligible, the shearing is called *drained shear*. During undrained shear, the water pressure u changes depending on volume change tendencies. From the effective stress equation, the change in u directly effects the effective stress by the equation:

```
\displaystyle_\sigma_'=\sigma -u\,
```

and the strength is very sensitive to the effective stress. It follows then that the undrained shear strength of a soil may be smaller or larger than the drained shear strength depending upon whether the soil is contractive or dilative.

Shear tests

[edit]

Strength parameters can be measured in the laboratory using direct shear test, triaxial shear test, simple shear test, fall cone test and (hand) shear vane test; there are numerous other devices and variations on these devices used in practice today. Tests conducted to characterize the strength and stiffness of the soils in the ground include the Cone penetration test and the Standard penetration test.

Other factors

[edit]

The stress–strain relationship of soils, and therefore the shearing strength, is affected by:[¹⁷]

- 1. *soil composition* (basic soil material): mineralogy, grain size and grain size distribution, shape of particles, pore fluid type and content, ions on grain and in pore fluid.
- 2. *state* (initial): Defined by the initial void ratio, effective normal stress and shear stress (stress history). State can be describd by terms such as: loose, dense, overconsolidated, normally consolidated, stiff, soft, contractive, dilative, etc.
- 3. *structure*: Refers to the arrangement of particles within the soil mass; the manner in which the particles are packed or distributed. Features such as layers, joints, fissures, slickensides, voids, pockets, cementation, etc., are part of the structure. Structure of soils is described by terms such as: undisturbed, disturbed, remolded, compacted, cemented; flocculent, honey-combed, single-grained; flocculated, deflocculated; stratified, layered, laminated; isotropic and anisotropic.
- 4. Loading conditions: Effective stress path drained, undrained, and type of loading magnitude, rate (static, dynamic), and time history (monotonic, cyclic).

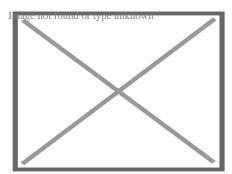
Applications

[edit]

Lateral earth pressure

[edit] Main article: Lateral earth pressure

Lateral earth stress theory is used to estimate the amount of stress soil can exert perpendicular to gravity. This is the stress exerted on retaining walls. A lateral earth stress coefficient, K, is defined as the ratio of lateral (horizontal) effective stress to vertical effective stress for cohesionless soils (K=?'_h/?'_v). There are three coefficients: at-rest, active, and passive. At-rest stress is the lateral stress in the ground before any disturbance takes place. The active stress state is reached when a wall moves away from the soil under the influence of lateral stress, and results from shear failure due to reduction of lateral stress. The passive stress state is reached when a wall is pushed into the soil far enough to cause shear failure within the mass due to increase of lateral stress. There are many theories for estimating lateral earth stress; some are empirically based, and some are analytically derived.


Bearing capacity

[edit] Main article: Bearing capacity

The bearing capacity of soil is the average contact stress between a foundation and the soil which will cause shear failure in the soil. Allowable bearing stress is the bearing capacity divided by a factor of safety. Sometimes, on soft soil sites, large settlements may occur under loaded foundations without actual shear failure occurring; in such cases, the allowable bearing stress is determined with regard to the maximum allowable settlement. It is important during construction and design stage of a project to evaluate the subgrade strength. The California Bearing Ratio (CBR) test is commonly used to determine the suitability of a soil as a subgrade for design and construction. The field Plate Load Test is commonly used to predict the deformations and failure characteristics of the soil/subgrade and modulus of subgrade reaction (ks). The Modulus of subgrade reaction (ks) is used in foundation design, soil-structure interaction studies and design of highway pavements. [*citation needed*]

Slope stability

[edit]

Simple slope slip section

Main article: Slope stability

The field of slope stability encompasses the analysis of static and dynamic stability of slopes of earth and rock-fill dams, slopes of other types of embankments, excavated slopes, and natural slopes in soil and soft rock.^[18]

As seen to the right, earthen slopes can develop a cut-spherical weakness zone. The probability of this happening can be calculated in advance using a simple 2-D circular

analysis package.^[19] A primary difficulty with analysis is locating the most-probable slip plane for any given situation.^[20] Many landslides have been analyzed only after the fact. Landslides vs. Rock strength are two factors for consideration.

Recent developments

[edit]

A recent finding in soil mechanics is that soil deformation can be described as the behavior of a dynamical system. This approach to soil mechanics is referred to as Dynamical Systems based Soil Mechanics (DSSM). DSSM holds simply that soil deformation is a Poisson process in which particles move to their final position at random shear strains.

The basis of DSSM is that soils (including sands) can be sheared till they reach a steadystate condition at which, under conditions of constant strain-rate, there is no change in shear stress, effective confining stress, and void ratio. The steady-state was formally defined[²¹] by Steve J. Poulos Archived 2020-10-17 at the Wayback Machine an associate professor at the Soil Mechanics Department of Harvard University, who built off a hypothesis that Arthur Casagrande was formulating towards the end of his career. The steady state condition is not the same as the "critical state" condition. It differs from the critical state in that it specifies a statistically constant structure at the steady state. The steady-state values are also very slightly dependent on the strain-rate.

Many systems in nature reach steady states, and dynamical systems theory describes such systems. Soil shear can also be described as a dynamical system.[²²][²³] The physical basis of the soil shear dynamical system is a Poisson process in which particles move to the steady-state at random shear strains.[²⁴] Joseph[²⁵] generalized this—particles move to their final position (not just steady-state) at random shear-strains. Because of its origins in the steady state concept, DSSM is sometimes informally called "Harvard soil mechanics."

DSSM provides for very close fits to stress–strain curves, including for sands. Because it tracks conditions on the failure plane, it also provides close fits for the post failure region of sensitive clays and silts something that other theories are not able to do. Additionally DSSM explains key relationships in soil mechanics that to date have simply been taken for granted, for example, why normalized undrained peak shear strengths vary with the log of the overconsolidation ratio and why stress–strain curves normalize with the initial effective confining stress; and why in one-dimensional consolidation the void ratio must vary with the log of the effective vertical stress, why the end-of-primary curve is unique for static load increments, and why the ratio of the creep value C? to the compression index Cc must be approximately constant for a wide range of soils.[²⁶]

See also

[edit]

- Critical state soil mechanics
- Earthquake engineering
- Engineering geology
- Geotechnical centrifuge modeling
- Geotechnical engineering
- Geotechnical engineering (Offshore)
- Geotechnics
- Hydrogeology, aquifer characteristics closely related to soil characteristics
- International Society for Soil Mechanics and Geotechnical Engineering
- Rock mechanics
- Slope stability analysis

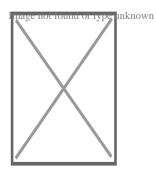
References

[edit]

- ^ a b c d e f g h Mitchell, J.K., and Soga, K. (2005) Fundamentals of soil behavior, Third edition, John Wiley and Sons, Inc., ISBN 978-0-471-46302-3
- A b c d e f Santamarina, J.C., Klein, K.A., & Fam, M.A. (2001). Soils and Waves: Particulate Materials Behavior, Characterization and Process Monitoring. Wiley. ISBN 978-0-471-49058-6.cite book: CS1 maint: multiple names: authors list (link).
- 3. ^ *a b c d e f g h i j k I* Powrie, W., Spon Press, 2004, *Soil Mechanics 2nd ed* ISBN 0-415-31156-X
- A b c d e f A Guide to Soil Mechanics, Bolton, Malcolm, Macmillan Press, 1979. ISBN 0-333-18931-0
- 5. ^ "Built Environment Routledge". Routledge.com. Retrieved 2017-01-14.
- A *b c d e* Lambe, T. William & Robert V. Whitman. Soil Mechanics. Wiley, 1991; p. 29. ISBN 978-0-471-51192-2
- A *b c d* Guerriero V., Mazzoli S. (2021). "Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review". Geosciences. *11* (3): 119. Bibcode:2021Geosc..11..119G. doi:10.3390/geosciences11030119.
- ASTM Standard Test Methods of Particle-Size Distribution (Gradation) of Soils using Sieve Analysis. http://www.astm.org/Standards/D6913.htm Archived 2011-08-10 at the Wayback Machine
- Classification of Soils for Engineering Purposes: Annual Book of ASTM Standards". D 2487-83. 04 (8). American Society for Testing and Materials. 1985: 395–408. Archived from the original on 2010-09-14. Retrieved 2010-08-31. cite journal: Cite journal requires |journal= (help)
- A *b* Wood, David Muir, Soil Behavior and Critical State Soil Mechanics, Cambridge University Press, 1990, ISBN 0-521-33249-4

- ^ a b c d e f g Disturbed soil properties and geotechnical design, Schofield, Andrew N., Thomas Telford, 2006. ISBN 0-7277-2982-9
- ASTM Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density. http://www.astm.org/Standards/D4254.htm Archived 2011-09-07 at the Wayback Machine
- 13. **^** Ozhovan, M.I.; Dmitriev, I.E.; Batyukhnova, O.G. (1993). "Fractal structure of pores in clay soil". Atomic Energy. **74** (3): 241–243. doi:10.1007/BF00739059. S2CID 95352427.
- 14. ^ *a b* Holtz, R.D, and Kovacs, W.D., 1981. An Introduction to Geotechnical Engineering. Prentice-Hall, Inc. page 448
- 15. ^ Terzaghi, K., 1943, Theoretical Soil Mechanics, John Wiley and Sons, New York
- 16. ^ *a b c d* Terzaghi, K., Peck, R.B., Mesri, G. (1996) Soil mechanics in Engineering Practice, Third Edition, John Wiley & Sons, Inc., ISBN 0-471-08658-4
- Poulos, S. J. 1989. Advance Dam Engineering for Design, Construction, and Rehabilitation: Liquefaction Related Phenomena. Ed. Jansen, R.B, Van Nostrand Reinhold, pages 292–297.
- Slope Stability (PDF). Engineer Manual. Vol. EM 1110-2-1902. United States Army Corps of Engineers. 3 Oct 2003. Archived (PDF) from the original on 2016-12-29. Retrieved 2017-01-18.
- 19. ^ "Slope Stability Calculator". Retrieved 2006-12-14.
- 20. **^** Chugh, A.K. (2002). "A method for locating critical slip surfaces in slope stability analysis: Discussion". Canadian Geotechnical Journal. **39** (3): 765–770. doi:10.1139/t02-042.
- 21. **^** Poulos, Steve J. (1981). "The Steady State of Deformation". Journal of Geotechnical Engineering. **107** (GT5): 553–562.
- A Joseph, Paul G. (2009). "Constitutive Model of Soil Based on a Dynamical Systems Approach". Journal of Geotechnical and Geoenvironmental Engineering. 135 (8): 1155– 1158. doi:10.1061/(asce)gt.1943-5606.0000001.
- ^ Joseph, Paul G. (2010). "A Dynamical Systems Based Approach to Soil Shear". Géotechnique. LX (10): 807–812. Bibcode:2010Getq...60..807J. doi:10.1680/geot.9.p.001.
- A Joseph, Paul G. (2012). "Physical Basis and Validation of a Constitutive Model for Soil Shear Derived from Micro-Structural Changes". International Journal of Geomechanics. 13 (4): 365–383. doi:10.1061/(asce)gm.1943-5622.0000209.
- A Joseph, Paul G. (2014). "Generalised dynamical systems soil deformation model". Geotechnical Research. 1 (1): 32–42. Bibcode:2014GeotR...1...32J. doi: 10.1680/geores.14.00004.
- A Joseph, Paul G. (2017). Dynamical Systems-Based Soil Mechanics (first ed.). CRC Press/Balkema. p. 138. ISBN 9781138723221. Archived from the original on 2018-03-24 . Retrieved 2017-05-14.

External links


[edit]

• Media related to Soil mechanics at Wikimedia Commons

- οV
- o t
- **e**

Soil science

- History
- $\circ \ \text{Index}$
- Pedology
- Edaphology
- Soil biology
- Soil microbiology
- Soil zoologySoil ecology
- Main fields
- Soil physics
- Soil mechanics
- \circ Soil chemistry
- Environmental soil science
- Agricultural soil science

- Soil
- Pedosphere
 - Soil morphology
 - Pedodiversity
 - Soil formation
- \circ Soil erosion
- Soil contamination
- Soil retrogression and degradation
- $\circ~$ Soil compaction
 - Soil compaction (agriculture)
- Soil sealing
- Soil salinity
 - Alkali soil
- ∘ Soil pH
 - Soil acidification
- Soil health
- Soil life

Soil topics

- Soil biodiversity
- $\circ\,$ Soil quality
- Soil value
- \circ Soil fertility
- Soil resilience
- Soil color
- Soil texture
- Soil structure
 - Pore space in soil
 - Pore water pressure
- Soil crust
- Soil horizon
- Soil biomantle
- Soil carbon
- Soil gas
 - Soil respiration
- $\circ~$ Soil organic matter
- Soil moisture
 - Soil water (retention)

• V • **t** • **e**

Soil classification

- Acrisols
- Alisols
- Andosols
- Anthrosols
- Arenosols
- Calcisols
- Cambisols
- Chernozem
- Cryosols
- Durisols
- Ferralsols
- Fluvisols
- Gleysols
- World • Gypsisols Reference
 - Histosol

• Kastanozems

- Base
- for Soil
- **Resources**
- (1998–)
- Lixisols • Luvisols

• Leptosols

- Nitisols
- Phaeozems
- Planosols
- Plinthosols
- Podzols
- Regosols
- Retisols
- Solonchaks
- Solonetz
- Stagnosol
- Technosols
- Umbrisols
- Vertisols
- Alfisols
- Andisols
- Aridisols
- Entisols

Histosols

- **USDA** soil

- Gelisols

- Soil conservation
- Soil management
- Soil guideline value
- Soil survey
- Soil test

Applications

- Soil value
- Soil salinity control
- Erosion control

• Soil governance

- Agroecology
- Liming (soil)
- Geology
- Geochemistry
- Petrology
- Geomorphology
- Geotechnical engineering

Related • Hydrology fields

- Hydrogeology
 - Biogeography
 - Earth materials
 - Archaeology
 - Agricultural science
 - Agrology
 - Australian Society of Soil Science Incorporated
 - Canadian Society of Soil Science
 - Central Soil Salinity Research Institute (India)
 - German Soil Science Society
 - Indian Institute of Soil Science
 - International Union of Soil Sciences

Societies, Initiatives

- International Year of Soil National Society of Consulting Soil Scientists (US)
- OPAL Soil Centre (UK)
- Soil Science Society of Poland
- Soil and Water Conservation Society (US)
- Soil Science Society of America
- World Congress of Soil Science

- Acta Agriculturae Scandinavica B
- Journal of Soil and Water Conservation

Scientific journals

- Plant and Soil
 - Pochvovedenie
 - Soil Research
 - Soil Science Society of America Journal
 - Land use
 - Land conversion
 - Land management
 - Vegetation
- See also
- Infiltration (hydrology)
 - Groundwater
 - Crust (geology)
 - $\circ~$ Impervious surface/Surface runoff
 - Petrichor
- Wikipedia:WikiProject Soil
- Category soil nown
- Category soil science
- Eist of soil scientists
- o v
- ∘ t
- ິ ເ - ດ
- **e**

Geotechnical engineering

Offshore geotechnical engineering

		• Core drill
		 Cone penetration test
		o Geo-electrical sounding
		• Permeability test
		 Load test Static Dynamic Statnamic
		 Pore pressure measurement Piezometer Well
		• Ram sounding
		• Bock control drilling
		• Kotary-pressure sounding
		• Rotary weight sounding
		• Sample series
	Field (<i>in situ</i>)	• Screw plate test
		 Deformation monitoring Inclinometer Settlement recordings
Investigation and		• Shear vane test
instrumentation		• Simple sounding
		• Standard penetration test
		• Total sounding
		o Trial pit
		• Visible bedrock
		 Nuclear densometer test
		 Exploration geophysics
		A

	Types	 Clay Silt Sand Gravel Peat Loam Loess
Soil	Properties	 Hydraulic conductivity Water content Void ratio Bulk density Thixotropy Reynolds' dilatancy Angle of repose Friction angle Cohesion Porosity Permeability Specific storage Shear strength Sensitivity

	Natural features	 Topography Vegetation Terrain Topsoil Water table Bedrock Subgrade Subsoil
Structures (Interaction)	Earthworks	 Shoring structures Retaining walls Gabion Ground freezing Mechanically stabilized earth Pressure grouting Slurry wall Soil nailing Tieback Land development Landfill Excavation Trench Embankment Cut Causeway Terracing Cut-and-cover Cut and fill Fill dirt Grading Land reclamation Track bed Erosion control Earth structure Expanded clay aggregate Crushed stone Geosynthetics Geosynthetic clay liner Cellular confinement

• Shallow

	Forces	 Effective stress Pore water pressure Lateral earth pressure Overburden pressure Preconsolidation pressure
Mechanics	Phenomena/ problems	 Permafrost Frost heaving Consolidation Compaction Earthquake Response spectrum Seismic hazard Shear wave Landslide analysis Stability analysis Mitigation Classification Sliding criterion Slab stabilisation

	∘ SEEP2D
Numerical	 STABL
	○ SVFlux
analysis software	 SVSlope
Sollware	 UTEXAS
	 Plaxis

- Geology
- Geochemistry
- Petrology
- Earthquake engineering
- Geomorphology
- Soil science

Related fields

- Hydrology
- \circ Hydrogeology
- Biogeography
- Earth materials
- Archaeology
- Agricultural science

 \circ Agrology

- Germany
- United States
- France

Authority control databases: National East this at Wikidata

- Japan
- Czech Republic
- \circ Israel

About Cook County

Photo

Image not found or type unknown **Photo**

Image not found or type unknown **Photo**

Image not found or type unknown **Photo**

Image not found or type unknown

Photo

Image not found or type unknown

Sand Ridge Nature Center

4.8 (96)

Photo

Image not found or type unknown

River Trail Nature Center

4.6 (235)

Photo

Palmisano (Henry) Park

4.7 (1262)

Driving Directions in Cook County

Driving Directions From Palmisano (Henry) Park to

Driving Directions From Lake Katherine Nature Center and Botanic Gardens to

Driving Directions From Navy Pier to

https://www.google.com/maps/dir/Navy+Pier/United+Structural+Systems+of+Illinois%2C 87.6050944,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-87.6050944!2d41.8918633!1m5!1m1!1sChIJ-wSxDtinD4gRiv4kY3RRh9U!2m2!1d-88.1396465!2d42.0637725!3e0

https://www.google.com/maps/dir/Lake+Katherine+Nature+Center+and+Botanic+Garden 87.8010774,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-87.8010774!2d41.6776048!1m5!1m1!1sChIJ-wSxDtinD4gRiv4kY3RRh9U!2m2!1d-88.1396465!2d42.0637725!3e2

https://www.google.com/maps/dir/Palmisano+%28Henry%29+Park/United+Structural+Sy 87.6490151,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-87.6490151!2d41.8429903!1m5!1m1!1sChIJ-wSxDtinD4gRiv4kY3RRh9U!2m2!1d-88.1396465!2d42.0637725!3e1

Reviews for

Jeffery James

Very happy with my experience. They were prompt and followed through, and very helpful in fixing the crack in my foundation.

Sarah McNeily

USS was excellent. They are honest, straightforward, trustworthy, and conscientious. They thoughtfully removed the flowers and flower bulbs to dig where they needed in the yard, replanted said flowers and spread the extra dirt to fill in an area of the yard. We've had other services from different companies and our yard was really a mess after. They kept the job site meticulously clean. The crew was on time and friendly. I'd recommend them any day! Thanks to Jessie and crew.

hage not found or type unknown

Jim de Leon (5)

It was a pleasure to work with Rick and his crew. From the beginning, Rick listened to my concerns and what I wished to accomplish. Out of the 6 contractors that quoted the project, Rick seemed the MOST willing to accommodate my wishes. His pricing was definitely more than fair as well. I had 10 push piers installed to stabilize and lift an addition of my house. The project commenced at the date that Rick had disclosed initially and it was completed within the same time period expected (based on Rick's original assessment). The crew was well informed, courteous, and hard working. They were not loud (even while equipment was being utilized) and were well spoken. My neighbors were very impressed on how polite they were when they entered / exited my property (saying hello or good morning each day when they crossed paths). You can tell they care about the customer concerns. They ensured that the property would be put back as clean as possible by placing MANY sheets of plywood down prior to excavating. They compacted the dirt back in the holes extremely well to avoid large stock piles of soils. All the while, the main office was calling me to discuss updates and expectations of completion. They provided waivers of lien, certificates of insurance, properly acquired permits, and JULIE locates. From a construction background, I can tell you that I did not see any flaws in the way they operated and this an extremely professional company. The pictures attached show the push piers added to the foundation (pictures 1, 2 & 3), the amount of excavation (picture 4), and the restoration after dirt was placed back in the pits and compacted (pictures 5, 6 & 7). Please notice that they also sealed two large cracks and steel plated these cracks from expanding further (which you can see under my sliding glass door). I, as well as my wife, are extremely happy that we chose United Structural Systems for our contractor. I would happily tell any of my friends and family to use this contractor should the opportunity arise!

hage not found or type unknown

Chris Abplanalp

(5)

USS did an amazing job on my underpinning on my house, they were also very courteous to the proximity of my property line next to my neighbor. They kept things in order with all the dirt/mud they had to excavate. They were done exactly in the timeframe they indicated, and the contract was very details oriented with drawings of what would

be done. Only thing that would have been nice, is they left my concrete a little muddy with boot prints but again, allin-all a great job

mage not	ound or type unknown
$ \times $	
Dave Ka	ri

(5)

What a fantastic experience! Owner Rick Thomas is a trustworthy professional. Nick and the crew are hard working, knowledgeable and experienced. I interviewed every company in the area, big and small. A homeowner never wants to hear that they have foundation issues. Out of every company, I trusted USS the most, and it paid off in the end. Highly recommend.

Exploring Techniques for Slab Jacking Projects View GBP

Frequently Asked Questions

What is slab jacking and how does it benefit residential foundation repair?

Slab jacking, also known as mud jacking, is a cost-effective method used to lift and level concrete slabs that have settled or sunk. It benefits residential foundation repair by restoring the structural integrity and preventing further damage to the home.

What are the common materials used in slab jacking for residential foundations?

The most common materials used in slab jacking for residential foundations are a mixture of water, soil, and cement (known as slurry), or polyurethane foam. The choice depends on the specific needs of the project, such as the type of soil and the extent of the settlement.

How long does a typical slab jacking project take for a residential foundation?

A typical slab jacking project for a residential foundation can be completed in one to two days, depending on the size of the area being repaired and the extent of the settlement. The process involves drilling holes, injecting the lifting material, and allowing it to cure.

What are the signs that a residential foundation may need slab jacking?

Signs that a residential foundation may need slab jacking include uneven or cracked floors, doors and windows that stick, and visible gaps between walls and floors. These signs indicate that the foundation has settled and may require lifting and leveling to restore its stability.

United Structural Systems of Illinois, Inc

Phone : +18473822882

City : Hoffman Estates

State : IL

Zip : 60169

Address : 2124 Stonington Ave

Google Business Profile

Company Website : https://www.unitedstructuralsystems.com/

USEFUL LINKS

Residential Foundation Repair Services


home foundation repair service

Foundation Repair Service

Sitemap

Privacy Policy

About Us

