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Comparing Pier and Beam
Home Foundations

When it comes to choosing the right foundation for a home, homeowners and builders often
find themselves weighing the pros and cons of various types. Soil stabilization ensures a
strong foundation and prevents further shifting home foundation repair service
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roadblock. Among the options, pier and beam foundations stand out as a popular choice,
especially in certain regions and for specific types of homes. Understanding the nuances of
pier and beam foundations, and comparing them with other types, can help in making an
informed decision that suits both the structure of the home and the local environmental
conditions.

Pier and beam foundations, also known as post and beam or crawl space foundations,
consist of a series of piers, typically made of concrete, that are embedded into the ground.
These piers support a series of beams, which in turn hold up the floor joists and the rest of
the home. This type of foundation creates a raised structure, often with a crawl space
between the ground and the bottom of the house. This space can be used for storage,
plumbing, and electrical systems, and it also allows for easier access for maintenance and
repairs.

One of the primary advantages of pier and beam foundations is their adaptability to different
soil types and conditions. In areas prone to expansive soils, which swell and shrink with
moisture changes, pier and beam foundations can be more forgiving than slab foundations.
The raised structure allows the home to shift slightly without causing significant damage,
whereas a slab might crack under similar conditions. This flexibility makes pier and beam
foundations particularly popular in regions like Texas, where the soil can be quite
challenging.

Another benefit of pier and beam foundations is their potential for better insulation and
ventilation. The crawl space can be insulated, which can contribute to a more energy-
efficient home. Additionally, the space allows for better air circulation, which can help in
reducing moisture-related issues like mold and mildew. This is a significant advantage over
slab foundations, which can sometimes lead to moisture problems if not properly sealed and
insulated.

However, pier and beam foundations do come with their own set of challenges. The crawl
space can be a haven for pests if not properly sealed and maintained. It also requires more
maintenance than a slab foundation, as the piers and beams need to be inspected regularly
for signs of settling, shifting, or damage. Additionally, the initial cost of constructing a pier
and beam foundation can be higher than that of a slab foundation, although the long-term
benefits might outweigh these costs in certain situations.

When comparing pier and beam foundations to other types, such as slab or basement
foundations, it's essential to consider the specific needs of the home and the local
environment. For instance, in areas prone to flooding, a pier and beam foundation might be



preferable, as it allows the home to be elevated above potential flood levels. On the other
hand, in colder climates, a basement foundation might be more suitable, as it can provide
additional living space and better insulation.

In conclusion, pier and beam foundations offer a versatile and adaptable option for home
construction, particularly in regions with challenging soil conditions. While they may require
more maintenance and have a higher initial cost, the benefits of flexibility, potential energy
efficiency, and better ventilation can make them a worthwhile choice for many homeowners.
As with any significant decision in home building, it's crucial to weigh the pros and cons of
pier and beam foundations against other options and consider the specific needs of the
home and the local environment before making a final decision.



About soil mechanics
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The Leaning Tower of Pisa – an example of a problem due to deformation of soil
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Slope instability issues for a temporary flood control levee in North Dakota, 2009

Image not found or type unknown

Earthwork in Germany
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Fox Glacier, New Zealand: Soil produced and transported by intense weathering and
erosion

Soil mechanics is a branch of soil physics and applied mechanics that describes the behavior of
soils. It differs from fluid mechanics and solid mechanics in the sense that soils consist of a
heterogeneous mixture of fluids (usually air and water) and particles (usually clay, silt, sand, and
gravel) but soil may also contain organic solids and other matter.[1][2][3][4] Along with rock
mechanics, soil mechanics provides the theoretical basis for analysis in geotechnical
engineering,[5] a subdiscipline of civil engineering, and engineering geology, a subdiscipline of
geology. Soil mechanics is used to analyze the deformations of and flow of fluids within natural
and man-made structures that are supported on or made of soil, or structures that are buried in
soils.[6] Example applications are building and bridge foundations, retaining walls, dams, and
buried pipeline systems. Principles of soil mechanics are also used in related disciplines such as
geophysical engineering, coastal engineering, agricultural engineering, and hydrology.

This article describes the genesis and composition of soil, the distinction between pore water
pressure and inter-granular effective stress, capillary action of fluids in the soil pore spaces, soil
classification, seepage and permeability, time dependent change of volume due to squeezing
water out of tiny pore spaces, also known as consolidation, shear strength and stiffness of soils.
The shear strength of soils is primarily derived from friction between the particles and
interlocking, which are very sensitive to the effective stress.[7][6] The article concludes with
some examples of applications of the principles of soil mechanics such as slope stability, lateral
earth pressure on retaining walls, and bearing capacity of foundations.

Genesis and composition of soils

[edit]

Genesis

[edit]



The primary mechanism of soil creation is the weathering of rock. All rock types (igneous rock,
metamorphic rock and sedimentary rock) may be broken down into small particles to create soil.
Weathering mechanisms are physical weathering, chemical weathering, and biological
weathering [1][2][3] Human activities such as excavation, blasting, and waste disposal, may also
create soil. Over geologic time, deeply buried soils may be altered by pressure and temperature
to become metamorphic or sedimentary rock, and if melted and solidified again, they would
complete the geologic cycle by becoming igneous rock.[3]

Physical weathering includes temperature effects, freeze and thaw of water in cracks, rain, wind,
impact and other mechanisms. Chemical weathering includes dissolution of matter composing a
rock and precipitation in the form of another mineral. Clay minerals, for example can be formed
by weathering of feldspar, which is the most common mineral present in igneous rock.

The most common mineral constituent of silt and sand is quartz, also called silica, which has the
chemical name silicon dioxide. The reason that feldspar is most common in rocks but silica is
more prevalent in soils is that feldspar is much more soluble than silica.

Silt, Sand, and Gravel are basically little pieces of broken rocks.

According to the Unified Soil Classification System, silt particle sizes are in the range of
0.002 mm to 0.075 mm and sand particles have sizes in the range of 0.075 mm to 4.75 mm.

Gravel particles are broken pieces of rock in the size range 4.75 mm to 100 mm. Particles larger
than gravel are called cobbles and boulders.[1][2]

Transport

[edit]

Image not found or type unknown

Example soil horizons. a) top soil and colluvium b) mature residual soil c) young
residual soil d) weathered rock



Soil deposits are affected by the mechanism of transport and deposition to their location. Soils
that are not transported are called residual soils—they exist at the same location as the rock
from which they were generated. Decomposed granite is a common example of a residual soil.
The common mechanisms of transport are the actions of gravity, ice, water, and wind. Wind
blown soils include dune sands and loess. Water carries particles of different size depending on
the speed of the water, thus soils transported by water are graded according to their size. Silt
and clay may settle out in a lake, and gravel and sand collect at the bottom of a river bed. Wind
blown soil deposits (aeolian soils) also tend to be sorted according to their grain size. Erosion at
the base of glaciers is powerful enough to pick up large rocks and boulders as well as soil; soils
dropped by melting ice can be a well graded mixture of widely varying particle sizes. Gravity on
its own may also carry particles down from the top of a mountain to make a pile of soil and
boulders at the base; soil deposits transported by gravity are called colluvium.[1][2]

The mechanism of transport also has a major effect on the particle shape. For example, low
velocity grinding in a river bed will produce rounded particles. Freshly fractured colluvium
particles often have a very angular shape.

Soil composition

[edit]

Soil mineralogy

[edit]

Silts, sands and gravels are classified by their size, and hence they may consist of a variety of
minerals. Owing to the stability of quartz compared to other rock minerals, quartz is the most
common constituent of sand and silt. Mica, and feldspar are other common minerals present in
sands and silts.[1] The mineral constituents of gravel may be more similar to that of the parent
rock.

The common clay minerals are montmorillonite or smectite, illite, and kaolinite or kaolin. These
minerals tend to form in sheet or plate like structures, with length typically ranging between 10?7

 m and 4x10?6 m and thickness typically ranging between 10?9 m and 2x10?6 m, and they have
a relatively large specific surface area. The specific surface area (SSA) is defined as the ratio of
the surface area of particles to the mass of the particles. Clay minerals typically have specific
surface areas in the range of 10 to 1,000 square meters per gram of solid.[3] Due to the large
surface area available for chemical, electrostatic, and van der Waals interaction, the mechanical
behavior of clay minerals is very sensitive to the amount of pore fluid available and the type and
amount of dissolved ions in the pore fluid.[1]

The minerals of soils are predominantly formed by atoms of oxygen, silicon, hydrogen, and
aluminum, organized in various crystalline forms. These elements along with calcium, sodium,



potassium, magnesium, and carbon constitute over 99 per cent of the solid mass of soils.[1]

Grain size distribution

[edit]
Main article: Soil gradation

Soils consist of a mixture of particles of different size, shape and mineralogy. Because the size of
the particles obviously has a significant effect on the soil behavior, the grain size and grain size
distribution are used to classify soils. The grain size distribution describes the relative proportions
of particles of various sizes. The grain size is often visualized in a cumulative distribution graph
which, for example, plots the percentage of particles finer than a given size as a function of size.
The median grain size, \displaystyle D_50Image not found or type unknown, is the size for which 50% of the particle mass consists of finer
particles. Soil behavior, especially the hydraulic conductivity, tends to be dominated by the
smaller particles, hence, the term "effective size", denoted by \displaystyle D_10Image not found or type unknown, is defined as the size for
which 10% of the particle mass consists of finer particles.

Sands and gravels that possess a wide range of particle sizes with a smooth distribution of
particle sizes are called well graded soils. If the soil particles in a sample are predominantly in a
relatively narrow range of sizes, the sample is uniformly graded. If a soil sample has distinct gaps
in the gradation curve, e.g., a mixture of gravel and fine sand, with no coarse sand, the sample
may be gap graded. Uniformly graded and gap graded soils are both considered to be poorly
graded. There are many methods for measuring particle-size distribution. The two traditional
methods are sieve analysis and hydrometer analysis.

Sieve analysis

[edit]

Image not found or type unknown

Sieve

The size distribution of gravel and sand particles are typically measured using sieve analysis.
The formal procedure is described in ASTM D6913-04(2009).[8] A stack of sieves with accurately
dimensioned holes between a mesh of wires is used to separate the particles into size bins. A
known volume of dried soil, with clods broken down to individual particles, is put into the top of a



stack of sieves arranged from coarse to fine. The stack of sieves is shaken for a standard period
of time so that the particles are sorted into size bins. This method works reasonably well for
particles in the sand and gravel size range. Fine particles tend to stick to each other, and hence
the sieving process is not an effective method. If there are a lot of fines (silt and clay) present in
the soil it may be necessary to run water through the sieves to wash the coarse particles and
clods through.

A variety of sieve sizes are available. The boundary between sand and silt is arbitrary. According
to the Unified Soil Classification System, a #4 sieve (4 openings per inch) having 4.75 mm
opening size separates sand from gravel and a #200 sieve with an 0.075 mm opening separates
sand from silt and clay. According to the British standard, 0.063 mm is the boundary between
sand and silt, and 2 mm is the boundary between sand and gravel.[3]

Hydrometer analysis

[edit]

The classification of fine-grained soils, i.e., soils that are finer than sand, is determined primarily
by their Atterberg limits, not by their grain size. If it is important to determine the grain size
distribution of fine-grained soils, the hydrometer test may be performed. In the hydrometer tests,
the soil particles are mixed with water and shaken to produce a dilute suspension in a glass
cylinder, and then the cylinder is left to sit. A hydrometer is used to measure the density of the
suspension as a function of time. Clay particles may take several hours to settle past the depth
of measurement of the hydrometer. Sand particles may take less than a second. Stokes' law
provides the theoretical basis to calculate the relationship between sedimentation velocity and
particle size. ASTM provides the detailed procedures for performing the Hydrometer test.

Clay particles can be sufficiently small that they never settle because they are kept in suspension
by Brownian motion, in which case they may be classified as colloids.

Mass-volume relations

[edit]

Image not found or type unknown

A phase diagram of soil indicating the masses and volumes of air, solid, water, and
voids



There are a variety of parameters used to describe the relative proportions of air, water and solid
in a soil. This section defines these parameters and some of their interrelationships.[2][6] The
basic notation is as follows:

\displaystyle V_aImage not found or type unknown, \displaystyle V_wImage not found or type unknown, and \displaystyle V_sImage not found or type unknown represent the volumes of air, water and solids in a soil mixture;

\displaystyle W_aImage not found or type unknown, \displaystyle W_wImage not found or type unknown, and \displaystyle W_sImage not found or type unknown represent the weights of air, water and solids in a soil mixture;

\displaystyle M_aImage not found or type unknown, \displaystyle M_wImage not found or type unknown, and \displaystyle M_sImage not found or type unknown represent the masses of air, water and solids in a soil mixture;

\displaystyle \rho _aImage not found or type unknown, \displaystyle \rho _wImage not found or type unknown, and \displaystyle \rho _sImage not found or type unknown represent the densities of the constituents (air, water and solids) in a soil
mixture;

Note that the weights, W, can be obtained by multiplying the mass, M, by the acceleration due to
gravity, g; e.g., \displaystyle W_s=M_sgImage not found or type unknown

Specific Gravity is the ratio of the density of one material compared to the density of pure water (
\displaystyle \rho _w=1g/cm^3
Image not found or type unknown).

Specific gravity of solids, 

\displaystyle G_s=\frac \rho _s\rho _w

Image not found or type unknown

Note that specific weight, conventionally denoted by the symbol \displaystyle \gamma Image not found or type unknown may be obtained by
multiplying the density ( \displaystyle \rho Image not found or type unknown ) of a material by the acceleration due to gravity, \displaystyle gImage not found or type unknown.

Density, bulk density, or wet density, \displaystyle \rho Image not found or type unknown, are different names for the density of the mixture, i.e.,
the total mass of air, water, solids divided by the total volume of air water and solids (the mass of
air is assumed to be zero for practical purposes):

\displaystyle \rho =\frac M_s+M_wV_s+V_w+V_a=\frac M_tV_t

Image not found or type unknown

Dry density, \displaystyle \rho _dImage not found or type unknown, is the mass of solids divided by the total volume of air water and solids:

\displaystyle \rho _d=\frac M_sV_s+V_w+V_a=\frac M_sV_t

Image not found or type unknown

Buoyant density, \displaystyle \rho '
Image not found or type unknown, defined as the density of the mixture minus the density of water is useful if

the soil is submerged under water:

\displaystyle \rho '=\rho \ -\rho _w
Image not found or type unknown

where \displaystyle \rho _wImage not found or type unknown is the density of water

Water content, \displaystyle wImage not found or type unknown is the ratio of mass of water to mass of solid. It is easily measured by weighing
a sample of the soil, drying it out in an oven and re-weighing. Standard procedures are described



by ASTM.

\displaystyle w=\frac M_wM_s=\frac W_wW_s

Image not found or type unknown

Void ratio, \displaystyle eImage not found or type unknown, is the ratio of the volume of voids to the volume of solids:

\displaystyle e=\frac V_vV_s=\frac V_vV_t-V_v=\frac n1-n

Image not found or type unknown

Porosity, \displaystyle nImage not found or type unknown, is the ratio of volume of voids to the total volume, and is related to the void ratio:

\displaystyle n=\frac V_vV_t=\frac V_vV_s+V_v=\frac e1+e

Image not found or type unknown

Degree of saturation, \displaystyle SImage not found or type unknown, is the ratio of the volume of water to the volume of voids:

\displaystyle S=\frac V_wV_v

Image not found or type unknown

From the above definitions, some useful relationships can be derived by use of basic algebra.

\displaystyle \rho =\frac (G_s+Se)\rho _w1+e

Image not found or type unknown

\displaystyle \rho =\frac (1+w)G_s\rho _w1+e

Image not found or type unknown

\displaystyle w=\frac SeG_s

Image not found or type unknown

Soil classification

[edit]

Geotechnical engineers classify the soil particle types by performing tests on disturbed (dried,
passed through sieves, and remolded) samples of the soil. This provides information about the
characteristics of the soil grains themselves. Classification of the types of grains present in a soil
does not[clarification needed] account for important effects of the structure or fabric of the soil,
terms that describe compactness of the particles and patterns in the arrangement of particles in
a load carrying framework as well as the pore size and pore fluid distributions. Engineering
geologists also classify soils based on their genesis and depositional history.



Classification of soil grains

[edit]

In the US and other countries, the Unified Soil Classification System (USCS) is often used for
soil classification. Other classification systems include the British Standard BS 5930 and the
AASHTO soil classification system.[3]

Classification of sands and gravels

[edit]

In the USCS, gravels (given the symbol G) and sands (given the symbol S) are classified
according to their grain size distribution. For the USCS, gravels may be given the classification
symbol GW (well-graded gravel), GP (poorly graded gravel), GM (gravel with a large amount of
silt), or GC (gravel with a large amount of clay). Likewise sands may be classified as being SW,
SP, SM or SC. Sands and gravels with a small but non-negligible amount of fines (5–12%) may
be given a dual classification such as SW-SC.

Atterberg limits

[edit]

Clays and Silts, often called 'fine-grained soils', are classified according to their Atterberg limits;
the most commonly used Atterberg limits are the liquid limit (denoted by LL or \displaystyle w_lImage not found or type unknown), plastic limit
(denoted by PL or \displaystyle w_pImage not found or type unknown), and shrinkage limit (denoted by SL).

The liquid limit is the water content at which the soil behavior transitions from a plastic solid to a
liquid. The plastic limit is the water content at which the soil behavior transitions from that of a
plastic solid to a brittle solid. The Shrinkage Limit corresponds to a water content below which
the soil will not shrink as it dries. The consistency of fine grained soil varies in proportional to the
water content in a soil.

As the transitions from one state to another are gradual, the tests have adopted arbitrary
definitions to determine the boundaries of the states. The liquid limit is determined by measuring
the water content for which a groove closes after 25 blows in a standard test.[9] [clarification needed]

Alternatively, a fall cone test apparatus may be used to measure the liquid limit. The undrained
shear strength of remolded soil at the liquid limit is approximately 2 kPa.[4][10] The plastic limit is
the water content below which it is not possible to roll by hand the soil into 3 mm diameter
cylinders. The soil cracks or breaks up as it is rolled down to this diameter. Remolded soil at the
plastic limit is quite stiff, having an undrained shear strength of the order of about 200 kPa.[4][10]



The plasticity index of a particular soil specimen is defined as the difference between the liquid
limit and the plastic limit of the specimen; it is an indicator of how much water the soil particles in
the specimen can absorb, and correlates with many engineering properties like permeability,
compressibility, shear strength and others. Generally, the clay having high plasticity have lower
permeability and also they are also difficult to be compacted.

Classification of silts and clays

[edit]

According to the Unified Soil Classification System (USCS), silts and clays are classified by
plotting the values of their plasticity index and liquid limit on a plasticity chart. The A-Line on the
chart separates clays (given the USCS symbol C) from silts (given the symbol M). LL=50%
separates high plasticity soils (given the modifier symbol H) from low plasticity soils (given the
modifier symbol L). A soil that plots above the A-line and has LL>50% would, for example, be
classified as CH. Other possible classifications of silts and clays are ML, CL and MH. If the
Atterberg limits plot in the"hatched" region on the graph near the origin, the soils are given the
dual classification 'CL-ML'.

Indices related to soil strength

[edit]

Liquidity index

[edit]

The effects of the water content on the strength of saturated remolded soils can be quantified by
the use of the liquidity index, LI:

\displaystyle LI=\frac w-PLLL-PL

Image not found or type unknown

When the LI is 1, remolded soil is at the liquid limit and it has an undrained shear strength of
about 2 kPa. When the soil is at the plastic limit, the LI is 0 and the undrained shear strength is
about 200 kPa.[4][11]

Relative density

[edit]



The density of sands (cohesionless soils) is often characterized by the relative density, \displaystyle D_rImage not found or type unknown

\displaystyle D_r=\frac e_max-ee_max-e_min100\%

Image not found or type unknown

where: \displaystyle e_maxImage not found or type unknown is the "maximum void ratio" corresponding to a very loose state, \displaystyle e_minImage not found or type unknown is the
"minimum void ratio" corresponding to a very dense state and \displaystyle eImage not found or type unknown is the in situ void ratio. Methods
used to calculate relative density are defined in ASTM D4254-00(2006).[12]

Thus if \displaystyle D_r=100\%Image not found or type unknown the sand or gravel is very dense, and if \displaystyle D_r=0\%Image not found or type unknown the soil is extremely
loose and unstable.

Seepage: steady state flow of water

[edit]
This section is an excerpt from Seepage.[edit]

Image not found or type unknown

A cross section showing the water table varying with surface topography as well as a
perched water table

In soil mechanics, seepage is the movement of water through soil. If fluid pressures in a soil
deposit are uniformly increasing with depth according to \displaystyle u=\rho _wgz_wImage not found or type unknown, where \displaystyle z_wImage not found or type unknown is the depth
below the water table, then hydrostatic conditions will prevail and the fluids will not be flowing
through the soil. However, if the water table is sloping or there is a perched water table as
indicated in the accompanying sketch, then seepage will occur. For steady state seepage, the
seepage velocities are not varying with time. If the water tables are changing levels with time, or
if the soil is in the process of consolidation, then steady state conditions do not apply.

Effective stress and capillarity: hydrostatic conditions

[edit]



Image not found or type unknown

Spheres immersed in water, reducing effective stress

Main article: Effective stress

To understand the mechanics of soils it is necessary to understand how normal stresses and
shear stresses are shared by the different phases. Neither gas nor liquid provide significant
resistance to shear stress. The shear resistance of soil is provided by friction and interlocking of
the particles. The friction depends on the intergranular contact stresses between solid particles.
The normal stresses, on the other hand, are shared by the fluid and the particles.[7] Although the
pore air is relatively compressible, and hence takes little normal stress in most geotechnical
problems, liquid water is relatively incompressible and if the voids are saturated with water, the
pore water must be squeezed out in order to pack the particles closer together.

The principle of effective stress, introduced by Karl Terzaghi, states that the effective stress ?'
(i.e., the average intergranular stress between solid particles) may be calculated by a simple
subtraction of the pore pressure from the total stress:

\displaystyle \sigma '=\sigma -u\,Image not found or type unknown[7]

where ? is the total stress and u is the pore pressure. It is not practical to measure ?' directly, so
in practice the vertical effective stress is calculated from the pore pressure and vertical total
stress. The distinction between the terms pressure and stress is also important. By definition,
pressure at a point is equal in all directions but stresses at a point can be different in different
directions. In soil mechanics, compressive stresses and pressures are considered to be positive
and tensile stresses are considered to be negative, which is different from the solid mechanics
sign convention for stress.

Total stress

[edit]

For level ground conditions, the total vertical stress at a point, \displaystyle \sigma _vImage not found or type unknown, on average, is the weight of
everything above that point per unit area. The vertical stress beneath a uniform surface layer
with density \displaystyle \rho Image not found or type unknown, and thickness \displaystyle HImage not found or type unknown is for example:



\displaystyle \sigma _v=\rho gH=\gamma HImage not found or type unknown

where \displaystyle gImage not found or type unknown is the acceleration due to gravity, and \displaystyle \gamma Image not found or type unknown is the unit weight of the overlying layer. If there
are multiple layers of soil or water above the point of interest, the vertical stress may be
calculated by summing the product of the unit weight and thickness of all of the overlying layers.
Total stress increases with increasing depth in proportion to the density of the overlying soil.

It is not possible to calculate the horizontal total stress in this way. Lateral earth pressures are
addressed elsewhere.

Pore water pressure

[edit]
Main article: Pore water pressure

Hydrostatic conditions

[edit]

Image not found or type unknown

Water is drawn into a small tube by surface tension. Water pressure, u, is negative
above and positive below the free water surface.

If the soil pores are filled with water that is not flowing but is static, the pore water pressures will
be hydrostatic. The water table is located at the depth where the water pressure is equal to the
atmospheric pressure. For hydrostatic conditions, the water pressure increases linearly with
depth below the water table:

\displaystyle u=\rho _wgz_wImage not found or type unknown

where \displaystyle \rho _wImage not found or type unknown is the density of water, and \displaystyle z_wImage not found or type unknown is the depth below the water table.

Capillary action

[edit]



Due to surface tension, water will rise up in a small capillary tube above a free surface of water.
Likewise, water will rise up above the water table into the small pore spaces around the soil
particles. In fact the soil may be completely saturated for some distance above the water table.
Above the height of capillary saturation, the soil may be wet but the water content will decrease
with elevation. If the water in the capillary zone is not moving, the water pressure obeys the
equation of hydrostatic equilibrium, \displaystyle u=\rho _wgz_wImage not found or type unknown, but note that \displaystyle z_wImage not found or type unknown, is negative above the water
table. Hence, hydrostatic water pressures are negative above the water table. The thickness of
the zone of capillary saturation depends on the pore size, but typically, the heights vary between
a centimeter or so for coarse sand to tens of meters for a silt or clay.[3] In fact the pore space of
soil is a uniform fractal e.g. a set of uniformly distributed D-dimensional fractals of average linear
size L. For the clay soil it has been found that L=0.15 mm and D=2.7.[13]

The surface tension of water explains why the water does not drain out of a wet sand castle or a
moist ball of clay. Negative water pressures make the water stick to the particles and pull the
particles to each other, friction at the particle contacts make a sand castle stable. But as soon as
a wet sand castle is submerged below a free water surface, the negative pressures are lost and
the castle collapses. Considering the effective stress equation, \displaystyle \sigma '=\sigma -u,Image not found or type unknown if the water pressure
is negative, the effective stress may be positive, even on a free surface (a surface where the
total normal stress is zero). The negative pore pressure pulls the particles together and causes
compressive particle to particle contact forces. Negative pore pressures in clayey soil can be
much more powerful than those in sand. Negative pore pressures explain why clay soils shrink
when they dry and swell as they are wetted. The swelling and shrinkage can cause major
distress, especially to light structures and roads.[14]

Later sections of this article address the pore water pressures for seepage and consolidation
problems.

Water at particle contacts

Image not found or type unknown

Water at
particle
contacts
Intergranular contact force due to surface tension

Image not found or type unknown

Intergranular
contact force due
to surface tension



Shrinkage caused by drying

Image not found or type unknown

Shrinkage caused by
drying

Consolidation: transient flow of water

[edit]
Main article: Consolidation (soil)

Image not found or type unknown

Consolidation analogy. The piston is supported by water underneath and a spring.
When a load is applied to the piston, water pressure increases to support the load. As
the water slowly leaks through the small hole, the load is transferred from the water
pressure to the spring force.

Consolidation is a process by which soils decrease in volume. It occurs when stress is applied to
a soil that causes the soil particles to pack together more tightly, therefore reducing volume.
When this occurs in a soil that is saturated with water, water will be squeezed out of the soil. The
time required to squeeze the water out of a thick deposit of clayey soil layer might be years. For
a layer of sand, the water may be squeezed out in a matter of seconds. A building foundation or
construction of a new embankment will cause the soil below to consolidate and this will cause
settlement which in turn may cause distress to the building or embankment. Karl Terzaghi
developed the theory of one-dimensional consolidation which enables prediction of the amount of
settlement and the time required for the settlement to occur.[15] Afterwards, Maurice Biot fully
developed the three-dimensional soil consolidation theory, extending the one-dimensional model
previously developed by Terzaghi to more general hypotheses and introducing the set of basic
equations of Poroelasticity.[7] Soils are tested with an oedometer test to determine their
compression index and coefficient of consolidation.

When stress is removed from a consolidated soil, the soil will rebound, drawing water back into
the pores and regaining some of the volume it had lost in the consolidation process. If the stress
is reapplied, the soil will re-consolidate again along a recompression curve, defined by the



recompression index. Soil that has been consolidated to a large pressure and has been
subsequently unloaded is considered to be overconsolidated. The maximum past vertical
effective stress is termed the preconsolidation stress. A soil which is currently experiencing the
maximum past vertical effective stress is said to be normally consolidated. The overconsolidation
ratio, (OCR) is the ratio of the maximum past vertical effective stress to the current vertical
effective stress. The OCR is significant for two reasons: firstly, because the compressibility of
normally consolidated soil is significantly larger than that for overconsolidated soil, and secondly,
the shear behavior and dilatancy of clayey soil are related to the OCR through critical state soil
mechanics; highly overconsolidated clayey soils are dilatant, while normally consolidated soils
tend to be contractive.[2][3][4]

Shear behavior: stiffness and strength

[edit]
Main article: shear strength (soil)

Image not found or type unknown

Typical stress strain curve for a drained dilatant soil

The shear strength and stiffness of soil determines whether or not soil will be stable or how much
it will deform. Knowledge of the strength is necessary to determine if a slope will be stable, if a
building or bridge might settle too far into the ground, and the limiting pressures on a retaining
wall. It is important to distinguish between failure of a soil element and the failure of a
geotechnical structure (e.g., a building foundation, slope or retaining wall); some soil elements
may reach their peak strength prior to failure of the structure. Different criteria can be used to
define the "shear strength" and the "yield point" for a soil element from a stress–strain curve.
One may define the peak shear strength as the peak of a stress–strain curve, or the shear
strength at critical state as the value after large strains when the shear resistance levels off. If the
stress–strain curve does not stabilize before the end of shear strength test, the "strength" is
sometimes considered to be the shear resistance at 15–20% strain.[14] The shear strength of
soil depends on many factors including the effective stress and the void ratio.

The shear stiffness is important, for example, for evaluation of the magnitude of deformations of
foundations and slopes prior to failure and because it is related to the shear wave velocity. The
slope of the initial, nearly linear, portion of a plot of shear stress as a function of shear strain is
called the shear modulus



Friction, interlocking and dilation

[edit]

Image not found or type unknown

Angle of repose

Soil is an assemblage of particles that have little to no cementation while rock (such as
sandstone) may consist of an assembly of particles that are strongly cemented together by
chemical bonds. The shear strength of soil is primarily due to interparticle friction and therefore,
the shear resistance on a plane is approximately proportional to the effective normal stress on
that plane.[3] The angle of internal friction is thus closely related to the maximum stable slope
angle, often called the angle of repose.

But in addition to friction, soil derives significant shear resistance from interlocking of grains. If
the grains are densely packed, the grains tend to spread apart from each other as they are
subject to shear strain. The expansion of the particle matrix due to shearing was called dilatancy
by Osborne Reynolds.[11] If one considers the energy required to shear an assembly of particles
there is energy input by the shear force, T, moving a distance, x and there is also energy input by
the normal force, N, as the sample expands a distance, y.[11] Due to the extra energy required
for the particles to dilate against the confining pressures, dilatant soils have a greater peak
strength than contractive soils. Furthermore, as dilative soil grains dilate, they become looser
(their void ratio increases), and their rate of dilation decreases until they reach a critical void
ratio. Contractive soils become denser as they shear, and their rate of contraction decreases
until they reach a critical void ratio.

Image not found or type unknown

A critical state line separates the dilatant and contractive states for soil.



The tendency for a soil to dilate or contract depends primarily on the confining pressure and the
void ratio of the soil. The rate of dilation is high if the confining pressure is small and the void
ratio is small. The rate of contraction is high if the confining pressure is large and the void ratio is
large. As a first approximation, the regions of contraction and dilation are separated by the
critical state line.

Failure criteria

[edit]

After a soil reaches the critical state, it is no longer contracting or dilating and the shear stress on
the failure plane \displaystyle \tau _critImage not found or type unknown is determined by the effective normal stress on the failure plane \displaystyle \sigma _n'Image not found or type unknown and
critical state friction angle \displaystyle \phi _crit'\ Image not found or type unknown:

\displaystyle \tau _crit=\sigma _n'\tan \phi _crit'\ Image not found or type unknown

The peak strength of the soil may be greater, however, due to the interlocking (dilatancy)
contribution. This may be stated:

\displaystyle \tau _peak=\sigma _n'\tan \phi _peak'\ 
Image not found or type unknown

where \displaystyle \phi _peak'>\phi _crit'
Image not found or type unknown. However, use of a friction angle greater than the critical state value for

design requires care. The peak strength will not be mobilized everywhere at the same time in a
practical problem such as a foundation, slope or retaining wall. The critical state friction angle is
not nearly as variable as the peak friction angle and hence it can be relied upon with confidence.[
3][4][11]

Not recognizing the significance of dilatancy, Coulomb proposed that the shear strength of soil
may be expressed as a combination of adhesion and friction components:[11]

\displaystyle \tau _f=c'+\sigma _f'\tan \phi '\,
Image not found or type unknown

It is now known that the \displaystyle c'Image not found or type unknown and \displaystyle \phi 'Image not found or type unknown parameters in the last equation are not fundamental soil
properties.[3][6][11][16] In particular, \displaystyle c'Image not found or type unknown and \displaystyle \phi 'Image not found or type unknown are different depending on the magnitude of
effective stress.[6][16] According to Schofield (2006),[11] the longstanding use of \displaystyle c'Image not found or type unknown in practice
has led many engineers to wrongly believe that \displaystyle c'Image not found or type unknown is a fundamental parameter. This assumption
that \displaystyle c'Image not found or type unknown and \displaystyle \phi 'Image not found or type unknown are constant can lead to overestimation of peak strengths.[3][16]



Structure, fabric, and chemistry

[edit]

In addition to the friction and interlocking (dilatancy) components of strength, the structure and
fabric also play a significant role in the soil behavior. The structure and fabric include factors
such as the spacing and arrangement of the solid particles or the amount and spatial distribution
of pore water; in some cases cementitious material accumulates at particle-particle contacts.
Mechanical behavior of soil is affected by the density of the particles and their structure or
arrangement of the particles as well as the amount and spatial distribution of fluids present (e.g.,
water and air voids). Other factors include the electrical charge of the particles, chemistry of pore
water, chemical bonds (i.e. cementation -particles connected through a solid substance such as
recrystallized calcium carbonate) [1][16]

Drained and undrained shear

[edit]

Image not found or type unknown

Moist sand along the shoreline is originally densely packed by the draining water. Foot
pressure on the sand causes it to dilate (see: Reynolds dilatancy), drawing water from
the surface into the pores.

The presence of nearly incompressible fluids such as water in the pore spaces affects the ability
for the pores to dilate or contract.

If the pores are saturated with water, water must be sucked into the dilating pore spaces to fill
the expanding pores (this phenomenon is visible at the beach when apparently dry spots form
around feet that press into the wet sand).[clarification needed]

Similarly, for contractive soil, water must be squeezed out of the pore spaces to allow contraction
to take place.



Dilation of the voids causes negative water pressures that draw fluid into the pores, and
contraction of the voids causes positive pore pressures to push the water out of the pores. If the
rate of shearing is very large compared to the rate that water can be sucked into or squeezed out
of the dilating or contracting pore spaces, then the shearing is called undrained shear, if the
shearing is slow enough that the water pressures are negligible, the shearing is called drained
shear. During undrained shear, the water pressure u changes depending on volume change
tendencies. From the effective stress equation, the change in u directly effects the effective
stress by the equation:

\displaystyle \sigma '=\sigma -u\,Image not found or type unknown

and the strength is very sensitive to the effective stress. It follows then that the undrained shear
strength of a soil may be smaller or larger than the drained shear strength depending upon
whether the soil is contractive or dilative.

Shear tests

[edit]

Strength parameters can be measured in the laboratory using direct shear test, triaxial shear
test, simple shear test, fall cone test and (hand) shear vane test; there are numerous other
devices and variations on these devices used in practice today. Tests conducted to characterize
the strength and stiffness of the soils in the ground include the Cone penetration test and the
Standard penetration test.

Other factors

[edit]

The stress–strain relationship of soils, and therefore the shearing strength, is affected by:[17]

1. soil composition (basic soil material): mineralogy, grain size and grain size distribution,
shape of particles, pore fluid type and content, ions on grain and in pore fluid.

2. state (initial): Defined by the initial void ratio, effective normal stress and shear stress
(stress history). State can be describd by terms such as: loose, dense, overconsolidated,
normally consolidated, stiff, soft, contractive, dilative, etc.

3. structure: Refers to the arrangement of particles within the soil mass; the manner in which
the particles are packed or distributed. Features such as layers, joints, fissures,
slickensides, voids, pockets, cementation, etc., are part of the structure. Structure of soils is
described by terms such as: undisturbed, disturbed, remolded, compacted, cemented;



flocculent, honey-combed, single-grained; flocculated, deflocculated; stratified, layered,
laminated; isotropic and anisotropic.

4. Loading conditions: Effective stress path - drained, undrained, and type of loading -
magnitude, rate (static, dynamic), and time history (monotonic, cyclic).

Applications

[edit]

Lateral earth pressure

[edit]
Main article: Lateral earth pressure

Lateral earth stress theory is used to estimate the amount of stress soil can exert perpendicular
to gravity. This is the stress exerted on retaining walls. A lateral earth stress coefficient, K, is
defined as the ratio of lateral (horizontal) effective stress to vertical effective stress for
cohesionless soils (K=?'h/?'v). There are three coefficients: at-rest, active, and passive. At-rest
stress is the lateral stress in the ground before any disturbance takes place. The active stress
state is reached when a wall moves away from the soil under the influence of lateral stress, and
results from shear failure due to reduction of lateral stress. The passive stress state is reached
when a wall is pushed into the soil far enough to cause shear failure within the mass due to
increase of lateral stress. There are many theories for estimating lateral earth stress; some are
empirically based, and some are analytically derived.

Bearing capacity

[edit]
Main article: Bearing capacity

The bearing capacity of soil is the average contact stress between a foundation and the soil
which will cause shear failure in the soil. Allowable bearing stress is the bearing capacity divided
by a factor of safety. Sometimes, on soft soil sites, large settlements may occur under loaded
foundations without actual shear failure occurring; in such cases, the allowable bearing stress is
determined with regard to the maximum allowable settlement. It is important during construction
and design stage of a project to evaluate the subgrade strength. The California Bearing Ratio
(CBR) test is commonly used to determine the suitability of a soil as a subgrade for design and
construction. The field Plate Load Test is commonly used to predict the deformations and failure
characteristics of the soil/subgrade and modulus of subgrade reaction (ks). The Modulus of
subgrade reaction (ks) is used in foundation design, soil-structure interaction studies and design
of highway pavements.[citation needed]



Slope stability

[edit]

Image not found or type unknown

Simple slope slip section

Main article: Slope stability

The field of slope stability encompasses the analysis of static and dynamic stability of slopes of
earth and rock-fill dams, slopes of other types of embankments, excavated slopes, and natural
slopes in soil and soft rock.[18]

As seen to the right, earthen slopes can develop a cut-spherical weakness zone. The probability
of this happening can be calculated in advance using a simple 2-D circular analysis package.[19]
A primary difficulty with analysis is locating the most-probable slip plane for any given situation.[
20] Many landslides have been analyzed only after the fact. Landslides vs. Rock strength are two
factors for consideration.

Recent developments

[edit]

A recent finding in soil mechanics is that soil deformation can be described as the behavior of a
dynamical system. This approach to soil mechanics is referred to as Dynamical Systems based
Soil Mechanics (DSSM). DSSM holds simply that soil deformation is a Poisson process in which
particles move to their final position at random shear strains.

The basis of DSSM is that soils (including sands) can be sheared till they reach a steady-state
condition at which, under conditions of constant strain-rate, there is no change in shear stress,
effective confining stress, and void ratio. The steady-state was formally defined[21] by Steve J.
Poulos Archived 2020-10-17 at the Wayback Machine an associate professor at the Soil
Mechanics Department of Harvard University, who built off a hypothesis that Arthur Casagrande
was formulating towards the end of his career. The steady state condition is not the same as the
"critical state" condition. It differs from the critical state in that it specifies a statistically constant
structure at the steady state. The steady-state values are also very slightly dependent on the



strain-rate.

Many systems in nature reach steady states, and dynamical systems theory describes such
systems. Soil shear can also be described as a dynamical system.[22][23] The physical basis of
the soil shear dynamical system is a Poisson process in which particles move to the steady-state
at random shear strains.[24] Joseph[25] generalized this—particles move to their final position
(not just steady-state) at random shear-strains. Because of its origins in the steady state
concept, DSSM is sometimes informally called "Harvard soil mechanics."

DSSM provides for very close fits to stress–strain curves, including for sands. Because it tracks
conditions on the failure plane, it also provides close fits for the post failure region of sensitive
clays and silts something that other theories are not able to do. Additionally DSSM explains key
relationships in soil mechanics that to date have simply been taken for granted, for example, why
normalized undrained peak shear strengths vary with the log of the overconsolidation ratio and
why stress–strain curves normalize with the initial effective confining stress; and why in one-
dimensional consolidation the void ratio must vary with the log of the effective vertical stress, why
the end-of-primary curve is unique for static load increments, and why the ratio of the creep
value C? to the compression index Cc must be approximately constant for a wide range of soils.[
26]

See also

[edit]

Critical state soil mechanics
Earthquake engineering
Engineering geology
Geotechnical centrifuge modeling
Geotechnical engineering
Geotechnical engineering (Offshore)
Geotechnics
Hydrogeology, aquifer characteristics closely related to soil characteristics
International Society for Soil Mechanics and Geotechnical Engineering
Rock mechanics
Slope stability analysis
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Spodosols
Ultisols
Vertisols

Other
systems

FAO soil classification (1974–1998)
Unified Soil Classification System
AASHTO Soil Classification System
Référentiel pédologique (French classification
system)
Canadian system of soil classification
Australian Soil Classification
Polish Soil Classification
1938 USDA soil taxonomy
List of U.S. state soils
List of vineyard soil types

Non-
systematic
soil types

Sand
Silt
Clay
Loam
Topsoil
Subsoil
Soil crust
Claypan
Hardpan
Gypcrust
Caliche
Parent material
Pedosphere
Laimosphere
Rhizosphere
Bulk soil
Alkali soil
Bay mud
Blue goo
Brickearth
Brown earth
Calcareous grassland
Dark earth
Dry quicksand
Duplex soil
Eluvium
Expansive clay
Fill dirt
Fuller's earth
Hydrophobic soil
Loess
Lunar soil
Martian soil
Mud
Muskeg
Paleosol
Peat
Prime farmland
Quicksand
Serpentine soil
Spodic soil
Stagnogley
Subaqueous soil
Takir
Terra preta
Terra rossa
Tropical peat
Yedoma

Image not found or type unknown Types of soil



Applications

Soil conservation
Soil management
Soil guideline value
Soil survey
Soil test
Soil governance
Soil value
Soil salinity control
Erosion control
Agroecology
Liming (soil)

Related
fields

Geology
Geochemistry
Petrology
Geomorphology
Geotechnical engineering
Hydrology
Hydrogeology
Biogeography
Earth materials
Archaeology
Agricultural science

Agrology

Societies,
Initiatives

Australian Society of Soil Science Incorporated
Canadian Society of Soil Science
Central Soil Salinity Research Institute (India)
German Soil Science Society
Indian Institute of Soil Science
International Union of Soil Sciences
International Year of Soil
National Society of Consulting Soil Scientists (US)
OPAL Soil Centre (UK)
Soil Science Society of Poland
Soil and Water Conservation Society (US)
Soil Science Society of America
World Congress of Soil Science



Scientific
journals

Acta Agriculturae Scandinavica B
Journal of Soil and Water Conservation
Plant and Soil
Pochvovedenie
Soil Research
Soil Science Society of America Journal

See also

Land use
Land conversion
Land management
Vegetation
Infiltration (hydrology)
Groundwater
Crust (geology)
Impervious surface/Surface runoff
Petrichor
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Offshore geotechnical engineering



Investigation
and

instrumentation

 

Field (in situ)
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 Core drill
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 Cone penetration test
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 Geo-electrical sounding
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 Permeability test

Image not found or type unknown
 Load test

Static
Dynamic
Statnamic

Image not found or type unknown
 Pore pressure measurement

Piezometer
Well

Image not found or type unknown
 Ram sounding
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 Rock control drilling
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 Rotary-pressure sounding
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 Rotary weight sounding
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 Sample series
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 Screw plate test

Deformation monitoring
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 Inclinometer
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 Settlement recordings
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 Shear vane test
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 Simple sounding
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 Standard penetration test
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 Total sounding
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 Trial pit
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 Visible bedrock

Nuclear densometer test

Exploration geophysics

Crosshole sonic logging

Pile integrity test

Wave equation analysis

Laboratory
testing

Soil classification
Atterberg limits
California bearing ratio
Direct shear test
Hydrometer
Proctor compaction test
R-value
Sieve analysis
Triaxial shear test
Oedometer test
Hydraulic conductivity tests
Water content tests

 



Soil

 

Types

Clay
Silt
Sand
Gravel
Peat
Loam
Loess

Properties

Hydraulic conductivity
Water content
Void ratio
Bulk density
Thixotropy
Reynolds' dilatancy
Angle of repose
Friction angle
Cohesion
Porosity
Permeability
Specific storage
Shear strength
Sensitivity

 



Structures
(Interaction)

 

Natural features

Topography
Vegetation
Terrain
Topsoil
Water table
Bedrock
Subgrade
Subsoil

Earthworks

Shoring structures
Retaining walls
Gabion
Ground freezing
Mechanically stabilized earth
Pressure grouting
Slurry wall
Soil nailing
Tieback

Land development
Landfill
Excavation
Trench
Embankment
Cut
Causeway
Terracing
Cut-and-cover
Cut and fill
Fill dirt
Grading
Land reclamation
Track bed
Erosion control
Earth structure
Expanded clay aggregate
Crushed stone
Geosynthetics

Geotextile
Geomembrane
Geosynthetic clay liner
Cellular confinement

Infiltration

Foundations
Shallow
Deep

 



Mechanics

 

Forces

Effective stress
Pore water pressure
Lateral earth pressure
Overburden pressure
Preconsolidation pressure

Phenomena/
problems

Permafrost
Frost heaving
Consolidation
Compaction
Earthquake

Response spectrum
Seismic hazard
Shear wave

Landslide analysis
Stability analysis
Mitigation
Classification
Sliding criterion
Slab stabilisation

Bearing capacity * Stress distribution in soil

 

Numerical analysis
software

SEEP2D
STABL
SVFlux
SVSlope
UTEXAS
Plaxis



Related fields

Geology
Geochemistry
Petrology
Earthquake engineering
Geomorphology
Soil science
Hydrology
Hydrogeology
Biogeography
Earth materials
Archaeology
Agricultural science

Agrology
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Germany
United States
France
BnF data
Japan
Czech Republic
Israel

 

About geotechnical engineering
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Boston's Big Dig presented geotechnical challenges in an urban environment.
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Precast concrete retaining wall
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A typical cross-section of a slope used in two-dimensional analyzes.

Geotechnical engineering, also known as geotechnics, is the branch of civil engineering
concerned with the engineering behavior of earth materials. It uses the principles of soil
mechanics and rock mechanics to solve its engineering problems. It also relies on knowledge of
geology, hydrology, geophysics, and other related sciences.

Geotechnical engineering has applications in military engineering, mining engineering, petroleum
engineering, coastal engineering, and offshore construction. The fields of geotechnical
engineering and engineering geology have overlapping knowledge areas. However, while
geotechnical engineering is a specialty of civil engineering, engineering geology is a specialty of



geology.

History

[edit]

Humans have historically used soil as a material for flood control, irrigation purposes, burial sites,
building foundations, and construction materials for buildings. Dykes, dams, and canals dating
back to at least 2000 BCE—found in parts of ancient Egypt, ancient Mesopotamia, the Fertile
Crescent, and the early settlements of Mohenjo Daro and Harappa in the Indus valley—provide
evidence for early activities linked to irrigation and flood control. As cities expanded, structures
were erected and supported by formalized foundations. The ancient Greeks notably constructed
pad footings and strip-and-raft foundations. Until the 18th century, however, no theoretical basis
for soil design had been developed, and the discipline was more of an art than a science, relying
on experience.[1]

Several foundation-related engineering problems, such as the Leaning Tower of Pisa, prompted
scientists to begin taking a more scientific-based approach to examining the subsurface. The
earliest advances occurred in the development of earth pressure theories for the construction of
retaining walls. Henri Gautier, a French royal engineer, recognized the "natural slope" of different
soils in 1717, an idea later known as the soil's angle of repose. Around the same time, a
rudimentary soil classification system was also developed based on a material's unit weight,
which is no longer considered a good indication of soil type.[1][2]

The application of the principles of mechanics to soils was documented as early as 1773 when
Charles Coulomb, a physicist and engineer, developed improved methods to determine the earth
pressures against military ramparts. Coulomb observed that, at failure, a distinct slip plane would
form behind a sliding retaining wall and suggested that the maximum shear stress on the slip
plane, for design purposes, was the sum of the soil cohesion, \displaystyle cImage not found or type unknown, and friction \displaystyle \sigma \,\!Image not found or type unknown\displaystyle \tan(\phi \,\!)Image not found or type unknown, where \displaystyle \sigma \,\!Image not found or type unknown

is the normal stress on the slip plane and \displaystyle \phi \,\!Image not found or type unknown is the friction angle of the soil. By combining
Coulomb's theory with Christian Otto Mohr's 2D stress state, the theory became known as Mohr-
Coulomb theory. Although it is now recognized that precise determination of cohesion is
impossible because \displaystyle cImage not found or type unknown is not a fundamental soil property, the Mohr-Coulomb theory is still used in
practice today.[3]

In the 19th century, Henry Darcy developed what is now known as Darcy's Law, describing the
flow of fluids in a porous media. Joseph Boussinesq, a mathematician and physicist, developed
theories of stress distribution in elastic solids that proved useful for estimating stresses at depth
in the ground. William Rankine, an engineer and physicist, developed an alternative to
Coulomb's earth pressure theory. Albert Atterberg developed the clay consistency indices that
are still used today for soil classification.[1][2] In 1885, Osborne Reynolds recognized that
shearing causes volumetric dilation of dense materials and contraction of loose granular
materials.



Modern geotechnical engineering is said to have begun in 1925 with the publication of
Erdbaumechanik by Karl von Terzaghi, a mechanical engineer and geologist. Considered by
many to be the father of modern soil mechanics and geotechnical engineering, Terzaghi
developed the principle of effective stress, and demonstrated that the shear strength of soil is
controlled by effective stress.[4] Terzaghi also developed the framework for theories of bearing
capacity of foundations, and the theory for prediction of the rate of settlement of clay layers due
to consolidation.[1][3][5] Afterwards, Maurice Biot fully developed the three-dimensional soil
consolidation theory, extending the one-dimensional model previously developed by Terzaghi to
more general hypotheses and introducing the set of basic equations of Poroelasticity.

In his 1948 book, Donald Taylor recognized that the interlocking and dilation of densely packed
particles contributed to the peak strength of the soil. Roscoe, Schofield, and Wroth, with the
publication of On the Yielding of Soils in 1958, established the interrelationships between the
volume change behavior (dilation, contraction, and consolidation) and shearing behavior with the
theory of plasticity using critical state soil mechanics. Critical state soil mechanics is the basis for
many contemporary advanced constitutive models describing the behavior of soil.[6]

In 1960, Alec Skempton carried out an extensive review of the available formulations and
experimental data in the literature about the effective stress validity in soil, concrete, and rock in
order to reject some of these expressions, as well as clarify what expressions were appropriate
according to several working hypotheses, such as stress-strain or strength behavior, saturated or
non-saturated media, and rock, concrete or soil behavior.

Roles

[edit]

Geotechnical investigation

[edit]
Main article: Geotechnical investigation

Geotechnical engineers investigate and determine the properties of subsurface conditions and
materials. They also design corresponding earthworks and retaining structures, tunnels, and
structure foundations, and may supervise and evaluate sites, which may further involve site
monitoring as well as the risk assessment and mitigation of natural hazards.[7][8]

Geotechnical engineers and engineering geologists perform geotechnical investigations to obtain
information on the physical properties of soil and rock underlying and adjacent to a site to design
earthworks and foundations for proposed structures and for the repair of distress to earthworks
and structures caused by subsurface conditions. Geotechnical investigations involve surface and
subsurface exploration of a site, often including subsurface sampling and laboratory testing of
retrieved soil samples. Sometimes, geophysical methods are also used to obtain data, which



include measurement of seismic waves (pressure, shear, and Rayleigh waves), surface-wave
methods and downhole methods, and electromagnetic surveys (magnetometer, resistivity, and
ground-penetrating radar). Electrical tomography can be used to survey soil and rock properties
and existing underground infrastructure in construction projects.[9]

Surface exploration can include on-foot surveys, geologic mapping, geophysical methods, and
photogrammetry. Geologic mapping and interpretation of geomorphology are typically completed
in consultation with a geologist or engineering geologist. Subsurface exploration usually involves
in-situ testing (for example, the standard penetration test and cone penetration test). The digging
of test pits and trenching (particularly for locating faults and slide planes) may also be used to
learn about soil conditions at depth. Large-diameter borings are rarely used due to safety
concerns and expense. Still, they are sometimes used to allow a geologist or engineer to be
lowered into the borehole for direct visual and manual examination of the soil and rock
stratigraphy.

Various soil samplers exist to meet the needs of different engineering projects. The standard
penetration test, which uses a thick-walled split spoon sampler, is the most common way to
collect disturbed samples. Piston samplers, employing a thin-walled tube, are most commonly
used to collect less disturbed samples. More advanced methods, such as the Sherbrooke block
sampler, are superior but expensive. Coring frozen ground provides high-quality undisturbed
samples from ground conditions, such as fill, sand, moraine, and rock fracture zones.[10]

Geotechnical centrifuge modeling is another method of testing physical-scale models of
geotechnical problems. The use of a centrifuge enhances the similarity of the scale model tests
involving soil because soil's strength and stiffness are susceptible to the confining pressure. The
centrifugal acceleration allows a researcher to obtain large (prototype-scale) stresses in small
physical models.

Foundation design

[edit]
Main article: Foundation (engineering)

The foundation of a structure's infrastructure transmits loads from the structure to the earth.
Geotechnical engineers design foundations based on the load characteristics of the structure
and the properties of the soils and bedrock at the site. Generally, geotechnical engineers first
estimate the magnitude and location of loads to be supported before developing an investigation
plan to explore the subsurface and determine the necessary soil parameters through field and
lab testing. Following this, they may begin the design of an engineering foundation. The primary
considerations for a geotechnical engineer in foundation design are bearing capacity, settlement,
and ground movement beneath the foundations.[11]



Earthworks

[edit]
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A compactor/roller operated by U.S. Navy Seabees

See also: Earthworks (engineering)

Geotechnical engineers are also involved in the planning and execution of earthworks, which
include ground improvement,[11] slope stabilization, and slope stability analysis.

Ground improvement

[edit]

Various geotechnical engineering methods can be used for ground improvement, including
reinforcement geosynthetics such as geocells and geogrids, which disperse loads over a larger
area, increasing the soil's load-bearing capacity. Through these methods, geotechnical
engineers can reduce direct and long-term costs.[12]

Slope stabilization

[edit]
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Simple slope slip section.

Main article: Slope stability

Geotechnical engineers can analyze and improve slope stability using engineering methods.
Slope stability is determined by the balance of shear stress and shear strength. A previously
stable slope may be initially affected by various factors, making it unstable. Nonetheless,
geotechnical engineers can design and implement engineered slopes to increase stability.

Slope stability analysis

[edit]
Main article: Slope stability analysis

Stability analysis is needed to design engineered slopes and estimate the risk of slope failure in
natural or designed slopes by determining the conditions under which the topmost mass of soil
will slip relative to the base of soil and lead to slope failure.[13] If the interface between the mass
and the base of a slope has a complex geometry, slope stability analysis is difficult and
numerical solution methods are required. Typically, the interface's exact geometry is unknown,
and a simplified interface geometry is assumed. Finite slopes require three-dimensional models
to be analyzed, so most slopes are analyzed assuming that they are infinitely wide and can be
represented by two-dimensional models.

Sub-disciplines

[edit]

Geosynthetics

[edit]
Main article: Geosynthetics
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A collage of geosynthetic products.

Geosynthetics are a type of plastic polymer products used in geotechnical engineering that
improve engineering performance while reducing costs. This includes geotextiles, geogrids,
geomembranes, geocells, and geocomposites. The synthetic nature of the products make them
suitable for use in the ground where high levels of durability are required. Their main functions
include drainage, filtration, reinforcement, separation, and containment.

Geosynthetics are available in a wide range of forms and materials, each to suit a slightly
different end-use, although they are frequently used together. Some reinforcement
geosynthetics, such as geogrids and more recently, cellular confinement systems, have shown to
improve bearing capacity, modulus factors and soil stiffness and strength.[14] These products
have a wide range of applications and are currently used in many civil and geotechnical
engineering applications including roads, airfields, railroads, embankments, piled embankments,
retaining structures, reservoirs, canals, dams, landfills, bank protection and coastal engineering.[
15]

Offshore

[edit]
Main article: Offshore geotechnical engineering
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Platforms offshore Mexico.

Offshore (or marine) geotechnical engineering is concerned with foundation design for human-
made structures in the sea, away from the coastline (in opposition to onshore or nearshore
engineering). Oil platforms, artificial islands and submarine pipelines are examples of such
structures.[16]

There are a number of significant differences between onshore and offshore geotechnical
engineering.[16][17] Notably, site investigation and ground improvement on the seabed are more
expensive; the offshore structures are exposed to a wider range of geohazards; and the
environmental and financial consequences are higher in case of failure. Offshore structures are
exposed to various environmental loads, notably wind, waves and currents. These phenomena
may affect the integrity or the serviceability of the structure and its foundation during its
operational lifespan and need to be taken into account in offshore design.



In subsea geotechnical engineering, seabed materials are considered a two-phase material
composed of rock or mineral particles and water.[18][19] Structures may be fixed in place in the
seabed—as is the case for piers, jetties and fixed-bottom wind turbines—or may comprise a
floating structure that remains roughly fixed relative to its geotechnical anchor point. Undersea
mooring of human-engineered floating structures include a large number of offshore oil and gas
platforms and, since 2008, a few floating wind turbines. Two common types of engineered design
for anchoring floating structures include tension-leg and catenary loose mooring systems.[20]

Observational method

[edit]

First proposed by Karl Terzaghi and later discussed in a paper by Ralph B. Peck, the
observational method is a managed process of construction control, monitoring, and review,
which enables modifications to be incorporated during and after construction. The method aims
to achieve a greater overall economy without compromising safety by creating designs based on
the most probable conditions rather than the most unfavorable.[21] Using the observational
method, gaps in available information are filled by measurements and investigation, which aid in
assessing the behavior of the structure during construction, which in turn can be modified per the
findings. The method was described by Peck as "learn-as-you-go".[22]

The observational method may be described as follows:[22]

1. General exploration sufficient to establish the rough nature, pattern, and properties of
deposits.

2. Assessment of the most probable conditions and the most unfavorable conceivable
deviations.

3. Creating the design based on a working hypothesis of behavior anticipated under the most
probable conditions.

4. Selection of quantities to be observed as construction proceeds and calculating their
anticipated values based on the working hypothesis under the most unfavorable conditions.

5. Selection, in advance, of a course of action or design modification for every foreseeable
significant deviation of the observational findings from those predicted.

6. Measurement of quantities and evaluation of actual conditions.
7. Design modification per actual conditions

The observational method is suitable for construction that has already begun when an
unexpected development occurs or when a failure or accident looms or has already happened. It
is unsuitable for projects whose design cannot be altered during construction.[22]

See also

[edit]
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Civil engineering
Deep Foundations Institute
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Earth structure
Effective stress
Engineering geology
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Soil mechanics
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Soil crust
Soil horizon
Soil biomantle
Soil carbon
Soil gas

Soil respiration
Soil organic matter
Soil moisture

Soil water (retention)



Soil type
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Soil classification

World
Reference

Base
for Soil

Resources
(1998–)

Acrisols
Alisols
Andosols
Anthrosols
Arenosols
Calcisols
Cambisols
Chernozem
Cryosols
Durisols
Ferralsols
Fluvisols
Gleysols
Gypsisols
Histosol
Kastanozems
Leptosols
Lixisols
Luvisols
Nitisols
Phaeozems
Planosols
Plinthosols
Podzols
Regosols
Retisols
Solonchaks
Solonetz
Stagnosol
Technosols
Umbrisols
Vertisols

USDA soil
taxonomy

Alfisols
Andisols
Aridisols
Entisols
Gelisols
Histosols
Inceptisols
Mollisols
Oxisols
Spodosols
Ultisols
Vertisols

Other
systems

FAO soil classification (1974–1998)
Unified Soil Classification System
AASHTO Soil Classification System
Référentiel pédologique (French classification
system)
Canadian system of soil classification
Australian Soil Classification
Polish Soil Classification
1938 USDA soil taxonomy
List of U.S. state soils
List of vineyard soil types

Non-
systematic
soil types

Sand
Silt
Clay
Loam
Topsoil
Subsoil
Soil crust
Claypan
Hardpan
Gypcrust
Caliche
Parent material
Pedosphere
Laimosphere
Rhizosphere
Bulk soil
Alkali soil
Bay mud
Blue goo
Brickearth
Brown earth
Calcareous grassland
Dark earth
Dry quicksand
Duplex soil
Eluvium
Expansive clay
Fill dirt
Fuller's earth
Hydrophobic soil
Loess
Lunar soil
Martian soil
Mud
Muskeg
Paleosol
Peat
Prime farmland
Quicksand
Serpentine soil
Spodic soil
Stagnogley
Subaqueous soil
Takir
Terra preta
Terra rossa
Tropical peat
Yedoma

Image not found or type unknown Types of soil



Applications

Soil conservation
Soil management
Soil guideline value
Soil survey
Soil test
Soil governance
Soil value
Soil salinity control
Erosion control
Agroecology
Liming (soil)

Related
fields

Geology
Geochemistry
Petrology
Geomorphology
Geotechnical engineering
Hydrology
Hydrogeology
Biogeography
Earth materials
Archaeology
Agricultural science

Agrology

Societies,
Initiatives

Australian Society of Soil Science Incorporated
Canadian Society of Soil Science
Central Soil Salinity Research Institute (India)
German Soil Science Society
Indian Institute of Soil Science
International Union of Soil Sciences
International Year of Soil
National Society of Consulting Soil Scientists (US)
OPAL Soil Centre (UK)
Soil Science Society of Poland
Soil and Water Conservation Society (US)
Soil Science Society of America
World Congress of Soil Science



Scientific
journals

Acta Agriculturae Scandinavica B
Journal of Soil and Water Conservation
Plant and Soil
Pochvovedenie
Soil Research
Soil Science Society of America Journal

See also

Land use
Land conversion
Land management
Vegetation
Infiltration (hydrology)
Groundwater
Crust (geology)
Impervious surface/Surface runoff
Petrichor

Image not found or type unknown Wikipedia:WikiProject Soil
 Image not found or type unknown Category soil
  Category soil science
Image not found or type unknown List of soil scientists
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Geotechnical engineering
 

Offshore geotechnical engineering



Investigation
and

instrumentation

 

Field (in situ)

Image not found or type unknown
 Core drill

Image not found or type unknown
 Cone penetration test

Image not found or type unknown
 Geo-electrical sounding

Image not found or type unknown
 Permeability test

Image not found or type unknown
 Load test

Static
Dynamic
Statnamic

Image not found or type unknown
 Pore pressure measurement

Piezometer
Well

Image not found or type unknown
 Ram sounding

Image not found or type unknown
 Rock control drilling

Image not found or type unknown
 Rotary-pressure sounding

Image not found or type unknown
 Rotary weight sounding

Image not found or type unknown
 Sample series

Image not found or type unknown
 Screw plate test

Deformation monitoring
Image not found or type unknown

 Inclinometer
Image not found or type unknown

 Settlement recordings

Image not found or type unknown
 Shear vane test

Image not found or type unknown
 Simple sounding

Image not found or type unknown
 Standard penetration test

Image not found or type unknown
 Total sounding

Image not found or type unknown
 Trial pit

Image not found or type unknown
 Visible bedrock

Nuclear densometer test

Exploration geophysics

Crosshole sonic logging

Pile integrity test

Wave equation analysis

Laboratory
testing

Soil classification
Atterberg limits
California bearing ratio
Direct shear test
Hydrometer
Proctor compaction test
R-value
Sieve analysis
Triaxial shear test
Oedometer test
Hydraulic conductivity tests
Water content tests

 



Soil

 

Types

Clay
Silt
Sand
Gravel
Peat
Loam
Loess

Properties

Hydraulic conductivity
Water content
Void ratio
Bulk density
Thixotropy
Reynolds' dilatancy
Angle of repose
Friction angle
Cohesion
Porosity
Permeability
Specific storage
Shear strength
Sensitivity

 



Structures
(Interaction)

 

Natural features

Topography
Vegetation
Terrain
Topsoil
Water table
Bedrock
Subgrade
Subsoil

Earthworks

Shoring structures
Retaining walls
Gabion
Ground freezing
Mechanically stabilized earth
Pressure grouting
Slurry wall
Soil nailing
Tieback

Land development
Landfill
Excavation
Trench
Embankment
Cut
Causeway
Terracing
Cut-and-cover
Cut and fill
Fill dirt
Grading
Land reclamation
Track bed
Erosion control
Earth structure
Expanded clay aggregate
Crushed stone
Geosynthetics

Geotextile
Geomembrane
Geosynthetic clay liner
Cellular confinement

Infiltration

Foundations
Shallow
Deep

 



Mechanics

 

Forces

Effective stress
Pore water pressure
Lateral earth pressure
Overburden pressure
Preconsolidation pressure

Phenomena/
problems

Permafrost
Frost heaving
Consolidation
Compaction
Earthquake

Response spectrum
Seismic hazard
Shear wave

Landslide analysis
Stability analysis
Mitigation
Classification
Sliding criterion
Slab stabilisation

Bearing capacity * Stress distribution in soil

 

Numerical analysis
software

SEEP2D
STABL
SVFlux
SVSlope
UTEXAS
Plaxis



Related fields

Geology
Geochemistry
Petrology
Earthquake engineering
Geomorphology
Soil science
Hydrology
Hydrogeology
Biogeography
Earth materials
Archaeology
Agricultural science

Agrology
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Construction
 

Types

Home construction
Offshore construction
Underground construction

Tunnel construction

History

Architecture
Construction
Structural engineering
Timeline of architecture
Water supply and sanitation



Professions

Architect
Building engineer
Building estimator
Building officials
Chartered Building Surveyor
Civil engineer
Civil estimator
Clerk of works
Project manager
Quantity surveyor
Site manager
Structural engineer
Superintendent

Trades workers
(List)

Banksman
Boilermaker
Bricklayer
Carpenter
Concrete finisher
Construction foreman
Construction worker
Electrician
Glazier
Ironworker
Millwright
Plasterer
Plumber
Roofer
Steel fixer
Welder



Organizations

American Institute of Constructors (AIC)
American Society of Civil Engineers (ASCE)
Asbestos Testing and Consultancy Association (ATAC)
Associated General Contractors of America (AGC)
Association of Plumbing and Heating Contractors (APHC)
Build UK
Construction History Society
Chartered Institution of Civil Engineering Surveyors (CICES)
Chartered Institute of Plumbing and Heating Engineering (CIPHE)
Civil Engineering Contractors Association (CECA)
The Concrete Society
Construction Management Association of America (CMAA)
Construction Specifications Institute (CSI)
FIDIC
Home Builders Federation (HBF)
Lighting Association
National Association of Home Builders (NAHB)
National Association of Women in Construction (NAWIC)
National Fire Protection Association (NFPA)
National Kitchen & Bath Association (NKBA)
National Railroad Construction and Maintenance Association (NRC)
National Tile Contractors Association (NTCA)
Railway Tie Association (RTA)
Royal Institution of Chartered Surveyors (RICS)
Scottish Building Federation (SBF)
Society of Construction Arbitrators

By country

India
Iran
Japan
Romania
Turkey
United Kingdom
United States

Regulation

Building code
Construction law
Site safety
Zoning



Architecture

Style
List

Industrial architecture
British

Indigenous architecture
Interior architecture
Landscape architecture
Vernacular architecture

Engineering

Architectural engineering
Building services engineering
Civil engineering

Coastal engineering
Construction engineering
Structural engineering

Earthquake engineering
Environmental engineering
Geotechnical engineering

Methods

List
Earthbag construction
Modern methods of construction
Monocrete construction
Slip forming



Other topics

Building material
List of building materials
Millwork

Construction bidding
Construction delay
Construction equipment theft
Construction loan
Construction management
Construction waste
Demolition
Design–build
Design–bid–build
DfMA
Heavy equipment
Interior design
Lists of buildings and structures

List of tallest buildings and structures
Megaproject
Megastructure
Plasterwork

Damp
Proofing

Parge coat
Roughcast

Harling
Real estate development
Stonemasonry
Sustainability in construction
Unfinished building
Urban design
Urban planning

Image not found or type unknown Outline Image not found or type unknown Category
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Germany
United States
Czech Republic
Israel

 

About Cook County
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Things To Do in Cook County

Photo
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Sand Ridge Nature Center

4.8 (96)

Photo

Image not found or type unknown

https://lh3.googleusercontent.com/places/ANXAkqEVMVB1AHVUHlrueKZDA_ud8kTxf_co-0Vc91SRhxtM2tJBi1TBFR4wXB0Dchg9XzLuRVs-ZZwsRbH9PssV1ThAqDpX0MFS47M=s1600-w203
https://lh3.googleusercontent.com/places/ANXAkqGyNpRxl0BMqTRNv6NVGNdOw-Z67lWpQb02Yt1e9PmXTe9DsG5yNCmNd1rKnX9YjLT3W54CruBN7o-u8x9dkokZ5SErRT37EEU=s1600-w203
https://lh3.googleusercontent.com/places/ANXAkqFlmTu-HYafQl-JXl69huqZ3wBPWGVnpavNtkKHbSMyaNXU8IvqFU-8eyNL_glVY3iA8NRa5OkflaNbG3fsGuPzAzXSQDuPFCY=s1600-w203
https://lh3.googleusercontent.com/places/ANXAkqGlJt65xnk0UN_KbKx0AAsrT03SM-Jj9jbAXO0V1l2g7N1ffQ0MecOX1vJOLgW6bRjwpouHe5BfXR-XSavB7oN_09eh9T97c_c=s1600-w203
https://www.google.com/maps/search/?api=1&query=Sand+Ridge+Nature+Center&query_place_id=ChIJUXT9NlsgDogR5i2MBKoww9w
https://www.google.com/maps/search/?api=1&query=River+Trail+Nature+Center&query_place_id=ChIJw5ytmWi4D4gRf9laNjp9y44


River Trail Nature Center

4.6 (235)

Photo
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Palmisano (Henry) Park

4.7 (1262)

Driving Directions in Cook County

Driving Directions From Palmisano (Henry) Park to

Driving Directions From Lake Katherine Nature Center and Botanic Gardens to

Driving Directions From Navy Pier to

https://www.google.com/maps/dir/Navy+Pier/United+Structural+Systems+of+Illinois%2C+Inc/@41.8918633,-
87.6050944,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-
87.6050944!2d41.8918633!1m5!1m1!1sChIJ-wSxDtinD4gRiv4kY3RRh9U!2m2!1d-
88.1396465!2d42.0637725!3e0

https://www.google.com/maps/dir/Lake+Katherine+Nature+Center+and+Botanic+Gardens/United+Structural+Systems+of+Illinois%2C+Inc/@41.6776048,-
87.8010774,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-
87.8010774!2d41.6776048!1m5!1m1!1sChIJ-wSxDtinD4gRiv4kY3RRh9U!2m2!1d-

https://www.google.com/maps/search/?api=1&query=River+Trail+Nature+Center&query_place_id=ChIJw5ytmWi4D4gRf9laNjp9y44
https://www.google.com/maps/search/?api=1&query=Palmisano+(Henry)+Park&query_place_id=ChIJ59crbk8sDogRWuHEWkIGRpk
https://www.google.com/maps/dir/Navy+Pier/United+Structural+Systems+of+Illinois,+Inc/@41.8918633,-87.6050944,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-87.6050944!2d41.8918633!1m5!1m1!1sChIJ-wSxDtinD4gRiv4kY3RRh9U!2m2!1d-88.1396465!2d42.0637725!3e0
https://www.google.com/maps/dir/Navy+Pier/United+Structural+Systems+of+Illinois,+Inc/@41.8918633,-87.6050944,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-87.6050944!2d41.8918633!1m5!1m1!1sChIJ-wSxDtinD4gRiv4kY3RRh9U!2m2!1d-88.1396465!2d42.0637725!3e0
https://www.google.com/maps/dir/Navy+Pier/United+Structural+Systems+of+Illinois,+Inc/@41.8918633,-87.6050944,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-87.6050944!2d41.8918633!1m5!1m1!1sChIJ-wSxDtinD4gRiv4kY3RRh9U!2m2!1d-88.1396465!2d42.0637725!3e0
https://www.google.com/maps/dir/Navy+Pier/United+Structural+Systems+of+Illinois,+Inc/@41.8918633,-87.6050944,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-87.6050944!2d41.8918633!1m5!1m1!1sChIJ-wSxDtinD4gRiv4kY3RRh9U!2m2!1d-88.1396465!2d42.0637725!3e0
https://www.google.com/maps/dir/Lake+Katherine+Nature+Center+and+Botanic+Gardens/United+Structural+Systems+of+Illinois,+Inc/@41.6776048,-87.8010774,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-87.8010774!2d41.6776048!1m5!1m1!1sChIJ-wSxDtinD4gRiv4kY3RRh9U!2m2!1d-88.1396465!2d42.0637725!3e2
https://www.google.com/maps/dir/Lake+Katherine+Nature+Center+and+Botanic+Gardens/United+Structural+Systems+of+Illinois,+Inc/@41.6776048,-87.8010774,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-87.8010774!2d41.6776048!1m5!1m1!1sChIJ-wSxDtinD4gRiv4kY3RRh9U!2m2!1d-88.1396465!2d42.0637725!3e2
https://www.google.com/maps/dir/Lake+Katherine+Nature+Center+and+Botanic+Gardens/United+Structural+Systems+of+Illinois,+Inc/@41.6776048,-87.8010774,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-87.8010774!2d41.6776048!1m5!1m1!1sChIJ-wSxDtinD4gRiv4kY3RRh9U!2m2!1d-88.1396465!2d42.0637725!3e2


88.1396465!2d42.0637725!3e2

https://www.google.com/maps/dir/Palmisano+%28Henry%29+Park/United+Structural+Systems+of+Illinois%2C+Inc/@41.8429903,-
87.6490151,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-
87.6490151!2d41.8429903!1m5!1m1!1sChIJ-wSxDtinD4gRiv4kY3RRh9U!2m2!1d-
88.1396465!2d42.0637725!3e1

Reviews for
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Jeffery James

(5)

Very happy with my experience. They were prompt and followed through, and very helpful in fixing the crack in my
foundation.

Image not found or type unknown

Sarah McNeily

(5)

USS was excellent. They are honest, straightforward, trustworthy, and conscientious. They thoughtfully removed the
flowers and flower bulbs to dig where they needed in the yard, replanted said flowers and spread the extra dirt to fill in an
area of the yard. We've had other services from different companies and our yard was really a mess after. They kept the
job site meticulously clean. The crew was on time and friendly. I'd recommend them any day! Thanks to Jessie and crew.

Image not found or type unknown

Jim de Leon

(5)

It was a pleasure to work with Rick and his crew. From the beginning, Rick listened to my concerns and what I wished to
accomplish. Out of the 6 contractors that quoted the project, Rick seemed the MOST willing to accommodate my wishes.
His pricing was definitely more than fair as well. I had 10 push piers installed to stabilize and lift an addition of my house.
The project commenced at the date that Rick had disclosed initially and it was completed within the same time period
expected (based on Rick's original assessment). The crew was well informed, courteous, and hard working. They were
not loud (even while equipment was being utilized) and were well spoken. My neighbors were very impressed on how
polite they were when they entered / exited my property (saying hello or good morning each day when they crossed
paths). You can tell they care about the customer concerns. They ensured that the property would be put back as clean
as possible by placing MANY sheets of plywood down prior to excavating. They compacted the dirt back in the holes
extremely well to avoid large stock piles of soils. All the while, the main office was calling me to discuss updates and
expectations of completion. They provided waivers of lien, certificates of insurance, properly acquired permits, and JULIE

https://www.google.com/maps/dir/Lake+Katherine+Nature+Center+and+Botanic+Gardens/United+Structural+Systems+of+Illinois,+Inc/@41.6776048,-87.8010774,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-87.8010774!2d41.6776048!1m5!1m1!1sChIJ-wSxDtinD4gRiv4kY3RRh9U!2m2!1d-88.1396465!2d42.0637725!3e2
https://www.google.com/maps/dir/Palmisano+(Henry)+Park/United+Structural+Systems+of+Illinois,+Inc/@41.8429903,-87.6490151,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-87.6490151!2d41.8429903!1m5!1m1!1sChIJ-wSxDtinD4gRiv4kY3RRh9U!2m2!1d-88.1396465!2d42.0637725!3e1
https://www.google.com/maps/dir/Palmisano+(Henry)+Park/United+Structural+Systems+of+Illinois,+Inc/@41.8429903,-87.6490151,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-87.6490151!2d41.8429903!1m5!1m1!1sChIJ-wSxDtinD4gRiv4kY3RRh9U!2m2!1d-88.1396465!2d42.0637725!3e1
https://www.google.com/maps/dir/Palmisano+(Henry)+Park/United+Structural+Systems+of+Illinois,+Inc/@41.8429903,-87.6490151,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-87.6490151!2d41.8429903!1m5!1m1!1sChIJ-wSxDtinD4gRiv4kY3RRh9U!2m2!1d-88.1396465!2d42.0637725!3e1
https://www.google.com/maps/dir/Palmisano+(Henry)+Park/United+Structural+Systems+of+Illinois,+Inc/@41.8429903,-87.6490151,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-87.6490151!2d41.8429903!1m5!1m1!1sChIJ-wSxDtinD4gRiv4kY3RRh9U!2m2!1d-88.1396465!2d42.0637725!3e1
https://www.google.com/maps/contrib/113304698413189355142/reviews
https://www.google.com/maps/contrib/105093733482379435952/reviews
https://www.google.com/maps/contrib/106515860537083006484/reviews


locates. From a construction background, I can tell you that I did not see any flaws in the way they operated and this an
extremely professional company. The pictures attached show the push piers added to the foundation (pictures 1, 2 & 3),
the amount of excavation (picture 4), and the restoration after dirt was placed back in the pits and compacted (pictures 5,
6 & 7). Please notice that they also sealed two large cracks and steel plated these cracks from expanding further (which
you can see under my sliding glass door). I, as well as my wife, are extremely happy that we chose United Structural
Systems for our contractor. I would happily tell any of my friends and family to use this contractor should the opportunity
arise!

Image not found or type unknown

Chris Abplanalp

(5)

USS did an amazing job on my underpinning on my house, they were also very courteous to the proximity of my property
line next to my neighbor. They kept things in order with all the dirt/mud they had to excavate. They were done exactly in
the timeframe they indicated, and the contract was very details oriented with drawings of what would be done. Only thing
that would have been nice, is they left my concrete a little muddy with boot prints but again, all-in-all a great job

Image not found or type unknown

Dave Kari

(5)

What a fantastic experience! Owner Rick Thomas is a trustworthy professional. Nick and the crew are hard working,
knowledgeable and experienced. I interviewed every company in the area, big and small. A homeowner never wants to
hear that they have foundation issues. Out of every company, I trusted USS the most, and it paid off in the end. Highly
recommend.

Comparing Pier and Beam Home FoundationsView GBP

Check our other pages :

Grasping the Scope of Epoxy Injection Repairs
Considering Carbon Fiber Solutions for Wall Reinforcement
Checking for Stair-Step Cracks Along Walls
Preventing Growth of Small Foundation Cracks

Frequently Asked Questions

https://www.google.com/maps/contrib/110055690114505518372/reviews
https://www.google.com/maps/contrib/116099977904617171399/reviews
https://www.google.com/maps/search/?api=1&query=42.0637725,-88.1396465&query_place_id=ChIJ-wSxDtinD4gRiv4kY3RRh9U
https://sos-at-vie-2.exo.io/corp-lean/unitedstructuralsystems/foundationrepairservice/reviewing-concrete-piers-for-structural-stability.html
https://sos-at-vie-2.exo.io/corp-lean/unitedstructuralsystems/foundationrepairservice/grasping-the-scope-of-epoxy-injection-repairs.html
https://sos-at-vie-2.exo.io/corp-lean/unitedstructuralsystems/foundationrepairservice/recognizing-basement-foundations-in-older-houses.html
https://sos-at-vie-2.exo.io/corp-lean/unitedstructuralsystems/foundationrepairservice/checking-for-stair-step-cracks-along-walls.html


What are the main differences between pier and beam and slab foundations?

Pier and beam foundations consist of piers supporting beams that elevate the home off the
ground, allowing for crawl space. Slab foundations are a single, solid concrete slab poured
directly onto the ground. Pier and beam foundations are generally more flexible and easier to
repair, while slab foundations are more cost-effective and simpler to construct.

What are the common issues with pier and beam foundations that might require repair?

Common issues include sagging or uneven floors due to settling piers, moisture-related
problems like mold and rot in the crawl space, and pest infestations. These can lead to
structural instability and require foundation repair services.

How does the repair process for pier and beam foundations differ from slab foundations?

Repairing pier and beam foundations often involves adjusting or replacing piers, addressing
moisture issues in the crawl space, and reinforcing beams. Slab foundation repairs typically
involve lifting and leveling the slab, filling voids underneath, and sometimes installing piers to
stabilize the slab. Pier and beam repairs are generally less invasive but may require more
frequent maintenance.



United Structural Systems of Illinois, Inc

Phone : +18473822882

City : Hoffman Estates

State : IL

Zip : 60169

Address : 2124 Stonington Ave

Google Business Profile

Company Website : https://www.unitedstructuralsystems.com/

USEFUL LINKS

Residential Foundation Repair Services

What are the cost considerations when choosing between repairing a pier and beam foundation versus replacing it?

Repairing a pier and beam foundation is usually less expensive than a full replacement, with
costs depending on the extent of damage and required repairs. Replacement involves
demolishing the existing foundation and building a new one, which can be significantly more
costly but may be necessary for severe damage or when planning major home renovations.

How can I prevent future issues with my pier and beam foundation?

To prevent future issues, ensure proper drainage around your home to keep the crawl space
dry, regularly inspect and maintain the foundation for signs of damage or pest activity, and
consider encapsulation of the crawl space to control moisture and improve energy efficiency.
Regular professional inspections can also help catch and address problems early.

https://www.google.com/maps/place/United+Structural+Systems+of+Illinois,+Inc/@42.0637725,-88.1396465,17z/data=!4m6!3m5!1s0x880fa7d80eb104fb:0xd58751746324fe8a!8m2!3d42.0637725!4d-88.1396465!16s/g/1ygvstdkq?entry=ttu&g_ep=EgoyMDI0MTIxMS4wIKXMDSoASAFQAw==
https://www.unitedstructuralsystems.com/
https://www.unitedstructuralsystems.com/services/residential/foundation-repair/


home foundation repair service

Foundation Repair Service

Sitemap

Privacy Policy

About Us

https://feeds.transistor.fm/strong-foundations-strong-homes
https://wakelet.com/wake/s4dJ6WEmlLHQOqab0807W
https://sos-at-vie-2.exo.io/corp-lean/unitedstructuralsystems/foundationrepairservice/sitemap.html
https://sos-at-vie-2.exo.io/corp-lean/unitedstructuralsystems/foundationrepairservice/privacy-policy.html
https://sos-at-vie-2.exo.io/corp-lean/unitedstructuralsystems/foundationrepairservice/about-us.html

